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Chapter 1

Preface

This book is intended for two types of people: those who love mathematics, and
those who don’t. If you belong to either one of these groups, I hope you will
read on.

The mathematics that most people encounter (high school, typically) isn’t a
reflection of what higher math is like. This means that people decide whether
or not they like mathematics, without ever knowing what mathematics is like.
This book is a journey along the paths of mathematics as it can be. It’s aimed
at someone with an approximately high school level of knowledge,1 with no
knowledge of calculus, matrices, or complex numbers assumed.

At the same time, I wanted this to be a book of mathematics, rather than
a book about mathematics. What does that mean? You’re not going to be
reading about concepts and proofs that other people did, you’re going to be
actually taking the steps yourself. And yet, we’re going to actually reach some
utterly amazing destinations.

To use mountaineering as a metaphor: this book is a hike to the top, as
opposed to a technical rock-face climb. It’s easier and doesn’t need as much
training, but you’re still going to take the steps yourself to get to the top. It’s
going to be my responsibility as your guide to ensure that each of these steps is
a reasonable ask for an amateur hiker.2

Importantly, you get to enjoy the view at the end that you arrived at by

1Or you could be a really motivated middle schooler, that’s okay too.
2If I don’t do this right, I’m pretty sure you’ll let me hear about it.

1



2 CHAPTER 1. PREFACE

yourself, rather than look at a photo that someone else took.

And most importantly, you’ll enjoy the journey.



Chapter 2

Introduction
“Something’s a little bit off”

Here’s a very simple question to start us off: what’s 142857× 2?

I’ll even give you the answer:

142857× 2 = 285714

Did you notice that something about the answer is a little unusual? You
probably did: the answer is simply the original number, except that it just happens
to have two digits chopped off from the front, and moved to the back.

Hmmm.

It’s not much. It’s just . . . a little bit funny. But this is how adventures begin,
mathematical adventures too. You find something that’s mildly curious, like the
small sharp glint of metal in the dirt, and then you start digging:

What if I multiply by numbers other than 2? Does it still work?
Are there any other numbers that behave like this?

Why does it behave like this?

Are there other places I can apply what I’ve learned?

3



4 CHAPTER 2. INTRODUCTION

You examine the glinting metal a little more closely, and it turns out to
be a locket. You open the locket, and it contains a clue: you solve the clue
and you find a treasure map. The treasure map sends you halfway around the
world. Before you know it, you’re in a new country, scuba diving in a coral
reef, surrounded by bright fish and sharks and coral. You’re tired, and you’re
overwhelmed, and you’re very very happy that you noticed that tiny sparkle of
metal in the grass.

For example, we’re going to dig into this particular little bit of funny business,
the number that twirled. And when we’re done digging, we’ll be talking to robots
beyond our solar system.

This kind of unexpected outcome isn’t unusual. Later in this book, we’ll
look at how toddlers play with shapes, and end up with an understanding of
Einstein’s Theory of Relativity, and a better GPS system. Or we’ll try to buy
some ice cream, and somehow explain superconductivity.

But don’t forget that it’s not just the end results that matter, as amazing as
they are. We’re going to learn that mathematics isn’t only useful, it’s stunningly
beautiful. But it’s not just useful and beautiful: most of all, it’s fun.



Chapter 3

The Number that Danced

3.1 The journey begins

We noticed in the Introduction that

142857× 2 = 285714,

where the answer is just the original number with the digits rotated. Does that
make you wonder if this keeps happening when you multiply it with numbers
other than 2? If you do, then congratulations: whether you know it or not,
you’re thinking like a mathematician.

Let’s do the calculations and see:

142857× 2 = 285714

142857× 3 = 428571

142857× 4 = 571428

142857× 5 = 714285

142857× 6 = 857142

142857× 7 = 999999

Aha! We see that yes, the rule does indeed work for numbers other than
2. But then we got a bonus. The last multiplication, the one that breaks the

5



6 CHAPTER 3. THE NUMBER THAT DANCED

pattern, is a hint: the next clue in the treasure hunt. It tells us that 142857× 7
is very nearly 1,000,000 or, alternatively, that 0.142857 is very close to 1/7. In
fact, if we look at the exact calculation, we see that 1

7
= 0.14285714285714...

where the digits 142857 keep repeating themselves over and over. There is no
way that this could be a coincidence. We have found ourselves our first clue!

Let’s take a closer look at what happens when divide 1 by 7. But this time,
instead of concentrating on the result, we’re going to focus on the remainders
at each step.
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0 . 1 4 2 8 5 7 1 4 2...

7 ) 1 . 0 0 0 0 0 0 0 0 0

- 7

3 0

- 2 8

2 0

- 1 4

6 0

- 5 6

4 0

- 3 5

5 0

- 4 9

1 0

- 7

3 0

- 2 8

2 0

- 1 4

6 ...

Table 3.1: dividing 1 by 7

See the remainders? There are four simple facts about them that I want to
point out that we’ll need for later.

1. The remainder at each stage will always be an integer less than 7, because
we’re dividing by 7.
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2. The first six of them are 3, 2, 6, 4, 5 and 1; and then they start repeating,
just like the first six digits of the answer keep repeating.

3. If you know the remainder at any stage, you know what the next digit in
the decimal answer is going to be. For example, if the remainder at some
stage is 5, then you’re going to “pull down the zero” to get 50 (which is
of course the same as multiplying it by 10). The next digit in the answer
is going to be what you get when you divide 50 by 7, which is 7.

4. If you know the remainder at any stage, you know what the next remainder
is, too. For example, assume that the remainder at some stage is 3. We
then “pull down the zero” to get 30 (in other words, multiply it by 10).
Then divide 30 by 7, which gives us 4, and a remainder of 2. So if the
remainder at one step is 3, the remainder at the next step has to be 2.1

Like in any good treasure hunt, we’re now going to go off in a completely
different direction for a bit. Don’t forget where we are now, because we’ll have
to come back here, but for the next step on our treasure hunt we must first solve
a fiendishly difficult puzzle.

3.2 A fiendishly difficult puzzle

1
2

3

4
567

8

9

10
11 12

If it’s 10 o’clock now, what time will it be in three hours?

1If you say a word too many times, then you sometimes find that it seems to lose its meaning.
This phenomenon is known as “semantic satiation”.Remainder, remainder, remainder!
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3.3 Are you kidding me?

Okay. It turns out it wasn’t that difficult a question. If you live in a place with
twelve hour clocks, three hours past 10 is 1 o’clock.

In the world of clock times, there are twelve possible hours: 1 through 12
(we’re going to ignore the minutes in this discussion). The rules to add or
subtract time are simple: if the answer is more than 12, you subtract 12. If it’s
less than zero, you add 122. The final number is always between 1 and 12. Six
hours before 3 o’clock is 9 o’clock.

Mathematicians have a fancy way of describing this: this is called arithmetic
modulo 12. And yes, they also call it “clock-number” arithmetic, because math-
ematicians are human beings too.

If you have a twelve hour clock, then “thirteen o’clock” is the same as one
o’clock; the mathematical way of saying this is 13 ≡ 1 (mod 12). This just
means that the difference between 13 and 1 is divisible by 12, so the two numbers
are equivalent if you’re just looking at the time.

3.4 Not so trivial

This seems to be pretty trivial, but don’t scoff at it. It’s actually the starting
point of something more profound.

What we’ve done here is we’ve moved on from ordinary numbers.
We needed to describe the mathematical operations that we want to do on clock
time (“What time will it be in three hours?”), and we created a whole new class
of objects to do this. They look like integers, but they don’t always act exactly
like them. For one thing, there are only twelve of them, from 1 through 12.
And addition is slightly different. When the mathematicians look at the numbers
modulo 12, however, they make one more tweak: instead of 1 through 12, they
use the numbers 0 through 11.

What can we say about this extremely simple system? Let’s look at the table
for addition, but this time we’ll use modulo 6 instead of modulo 12 (table 3.5).

2Have you noticed that a superscript for footnote number can be easily confused with a
superscript for raising to a power? An unscrupulous author could easily use this fact to drive
his readers crazy.
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If you remember, these tables are called Cayley’s tables; we’ll be using them a
lot in this book.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Table 3.2: Addition modulo 6

3.5 The rules of the game

What can we say about adding modulo 6? Are there any rules that it follows?
There are a few special aspects that may be obvious, but I want to point them
out anyway, because they’re so important.

1. The sum of any two “numbers” mod 6 is another number mod 6. (For
example, 5 + 4 = 3).

2. 0 + any number is just that number again. That is, 0 + x = x.

3. Every row, and every column, in the table has the number 0 somewhere
in it, exactly once.

4. (x+ y) + z = x+ (y + z)

When mathematicians look at these facts, they describe them in their own
way. Here are the same statements, but translated into mathematical language.
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1. The set is closed under addition modulo 6.

2. There is an identity element, e. (e is 0, in this particular case of
addition).

3. Each element has an inverse. (That is, for every number x, we can
find another number y so that x+ y = e.)

4. The addition is associative.

With little fuss and no fanfare,3 we’ve reached someplace important. Any
set of objects that obeys these rules is called a “group”. (This particular group
has a name, the Cyclic Group of order 6.) It’s difficult to emphasize enough
how powerful the concept of a group is in mathematics, or how central it is to
so many different fields. We will be coming across many of them in our travels
together and learning more about them at each stage.

3.6 Beauty and power in mathematics

But seriously. Given how important they are, couldn’t mathematicians have found
a more evocative name for this amazing structure, than the completely generic
sounding name “groups”? A little bit of Hollywood razmatazz would probably
have been helpful. I’m going to take a few minutes to talk about why groups are
so wonderful.

What do we look for in mathematics? What concepts are powerful, or beauti-
ful? There are a few considerations that come to mind. They actually contradict
each other a little bit, making it difficult to satisfy all the considerations at the
same time, which is actually a good thing, because if they didn’t then life would
be too easy, and what’s the fun in that?

Here are two reasons why groups are such an amazing concept.

3Honestly, I’ve never actually heard a fanfare at a single one of the moments that genuinely
called for one. I don’t think I’m the only one with this complaint.
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Groups have a very simple definition. The rules above are quite natural, and
there aren’t too many of them. This means that as you wander around
in the fields of mathematics, many of the structures you find are likely to
follow these rules. It’s almost spooky how often you bump into them, in
completely unexpected places. In this book, try to keep count of how many
times we mention a new group.

Groups are powerful. Once you know that something is a group, you learn
a lot about it. Groups are a very deep concept. There are many many
theorems that describe their behaviour, and in fact, we’re still learning
more about them.

What these two reasons imply is that when it comes to groups, we put in a
little bit (the definition of a group) and get back a lot (they’re very common,
and have interesting, unexpected behavior).

This is power in mathematics, this is beauty. Groups have it!

3.7 How about multiplication?

Where there’s addition, you often see multiplication, too. Does multiplication
modulo 6 form a group? Here in table 3.3 is a Cayley’s table for that.

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Table 3.3: Multiplication modulo 6

How does this work? For example, 4 x 2 = 8, and 8 ≡ 2 (mod 6), because
8 - 2 = 6.
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The first law of groups is obeyed. When you multiply two numbers in the
set, the answer is another number in the set.

The second law of groups is obeyed, but a little differently than before. The
second law says that there has to be an identity; that is, an element “e”
so that e× x = x whatever x is.

This is still valid, but the number that fulfils this role is different for multi-
plication: the identity was 0 for addition, but for multiplication, of course,
the identity is 1.

The third law...whoops. The third law says that every row has to have the
identity in it. To put it another way, for any x, you should be able to find
y so that x× y = 1.

We don’t see that here. The row for multiplying by 0 does not have a 1 in
it; neither do the rows for 2, 3, or 4. In other words, 0, 2, 3 and 4 do not
have inverses.

We struck out. These numbers do not form a group under multiplication.

3.8 Whatever shall we do?

We could mope about this, I guess. We could weep, and bemoan our fate. Or
we could try to fix it.

We know that 0× x = 0, always. So 0 is never going to have an inverse. If
0 doesn’t want to play along nicely with our group, let’s just go ahead and drop
it, shall we?

The other numbers in this table that don’t have inverses are 2, 3, and 4. They
have something in common: they share a common factor with 6. This makes
sense: for example, any multiple of 2 modulo 6 will still be an even number,
which means 1 cannot be a multiple of 2 modulo 6.

So in this case, it’s the modulus, 6, that’s the culprit. We can do better:
let’s choose to look at numbers modulo 7 instead. As 7 is a prime number, none
of the numbers less than it will have any common factor with it.

In table 3.6 we have a Cayley’s table of multiplication modulo 7, and we’ve
dropped the 0 as it didn’t want to play nice. That leaves the numbers 1 through
6.
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x 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Table 3.4: Multiplication modulo 7

And we’re off! You can check that this actually follows all the rules that
qualify it to be a group.4,5

Also, note that the numbers 0-7 form a group under addition (in the same
way that the numbers 0-6 did), and the numbers 1-7 (dropping the “0”) form
a group under multiplication. There’s a special name for this kind of structure,
namely, a field. We will be looking at fields for the rest of this chapter, but
we won’t be talking too much about them or using any particularly complicated
properties of fields.

3.9 Shakespeare as an underrated mathemati-
cian

Do you notice anything unusual about table 3.5 and table 3.6? I’d be surprised
if you did. The aspect I’m referring to is completely unexpected, subtle, and also
quite fundamental.

Here’s the answer: they’re exactly the same table. How could something as
simple as that pass us by? It’s because the players in the game changed their
names. They’re exactly the same table, but you need a translation table to see
the correspondence between the two of them.

To make it clearer, I’m going to repeat both of the tables right here, even
though we just saw them not that long ago. This is because, let’s face it, we’re
humans, and humans have sadly short attention spans.

4Really. You can check it.
5Have you checked it yet?
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+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Table 3.5: Addition modulo 6

× 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Table 3.6: Multiplication modulo 7

The first part of the translation is obvious. The first table has addition, the
second has multiplication, so +⇐⇒ ×.

The next correspondence is easy to guess at, too. The identity in the addition
table is 0, while the identity in the multiplication table is 1, so that is our next
correspondence: 0⇐⇒ 1.

The other numbers are trickier, however, as they don’t line up either. You
have to look carefully to figure out what to do with them. Here’s the full
translation table, table 3.7.
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+ ×
0 1
1 3
2 2
3 6
4 4
5 5

Table 3.7: Correspondences between adding mod 6 and multiplying mod 7

For example, 3 + 4 ≡ 1 (mod 6) is something we can read from table 3.5.
Reading from the correspondences in table 3.7, that statement becomes 6×4 ≡ 3
(mod 7), which we can check in table 3.6 to see if it’s true or not: and it is!

To emphasize this, we’re going to combine both of these Cayley’s tables into
one. The parts in purple are addition, while the parts in blue are multiplication,
and each pair in the same cell is connected by the correspondence table 3.7.

+,× 0,1 1,3 2,2 3,6 4,4 5,5

0,1 0,1 1,3 2,2 3,6 4,4 5,5
1,3 1,3 2,2 3,6 4,4 5,5 0,1
2,2 2,2 3,6 4,4 5,5 0,1 1,3
3,6 3,6 4,4 5,5 0,1 1,3 2,2
4,4 4,4 5,5 0,1 1,3 2,2 3,6
5,5 5,5 0,1 1,3 2,2 3,6 4,4

Table 3.8: Addition mod 6, multiplication mod 7

In “Romeo and Juliet” (Act II, Scene II), Shakespeare says:

What’s in a name? that which we call a rose
By any other name would smell as sweet.

He’s right, and we should probably listen to him more often. When we go
from addition modulo 6 to multiplication modulo 7, the names get changed, but
the deeper underlying structure doesn’t, and that is what is most important. I’m
not going to add the proof here, but this is in fact true for every prime number
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p: The multiplicative group of numbers from 1 to p − 1 (modulo p) is actually
the same as the additive group of numbers from 0 to p − 2 (modulo p-1), no
matter how hard it tries to disguise itself and look completely different.6

This is one of the ways mathematics makes progress

You solve one problem, you understand it, and then you find it pop up in a
hundred other places it was hiding. It turns out that it was just wearing a wig or
a false moustache, or using different names. And the results you got from the
work you put into solving it in the first place, can now get used for free in these
new situations.

In particular, it’s obvious that we can start with 0, and keep adding 1, and
thereby go through all the numbers modulo 6: 0, 1, 2, 3, 4, 5, 0, 1, 2, ... . But
we also know that addition modulo 6 is structurally the same as multiplication
modulo 7.

That tells us that we can start with 1, and keep multiplying by 3, and thereby
go through all the numbers modulo 7 (except 0, of course): 1, 3, 2, 6, 4, 5, 1,
3, 2, ... 7.

Any element of the group that creates all the rest of the elements of the
group in this way is called a generator. (Another term for this is a “primitive
element”).

So 1 is a generator of the addition group mod 6, and 3 is a generator of the
multiplication group mod 7.

You can see that 2 is not a generator of the addition group mod 6. If you
start from 0 and keep adding 2 (modulo 6), you get: 0, 2, 4, 0,... . You never
get to see the elements 1, 3 or 5.

3.10 As promised, back to 142857

Here’s where we were before we dove into group theory: The digits 142857 are
found repeating when we divide 1 by 7. In this process of division, the remainders

6Here’s a technical term for it: “isomorphism”, which is a fancy way of saying that the
groups are identical other than possibly having different names for the elements.

7Don’t let me stop you from checking this yourself. Really, be my guest.
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at each step keep repeating, too: 3, 2, 6, 4, 5, 1, 3, 2, 6,... . We can now look
at this again in the light of what we’ve just learned about group theory.

Here’s how we go from one remainder to the next in this series, 3, 2, 6, 4, 5,
1,.., described in two different ways.

Ordinary Division Group Theory

Start with the remainder at any stage Start with any number modulo 7
Multiply it by ten (“Bring down the zero”) Multiply it by 3 (because 10 ≡ 3 (mod 7))

Find the remainder when divided by 7 Convert to a number modulo 7

What this means, simply:

if the remainder at one step is a,

then the remainder at the next step will be 3 ∗ a,

where “*” means “multiplication in the modulo 7 multiplication group”.

We’ve already seen that the number 3 is a generator of the group, so if we
keep multiplying by 3, we will cover all the members of the group (in some order),
and then start repeating the sequence.8

3.11 What if we start with a number other than
3?

Recall that the multiplicative group modulo 7 is the same group as the additive
group modulo 6. So to ask the same question another way, what if we started
at, say, 4, and kept adding 1, modulo 6? That’s not a very difficult question. It
would go 4, 5, 0, 1, 2, 3, 4, and we’ve started all over again. In other words, the
same numbers, in the same order, just starting at a different value.

And, of course, the behavior will be exactly the same when we keep multi-
plying by 3: you’d still go over all the elements of the group, one by one in some

8Anyone feel like confirming that the sequence 3, 2, 6, 4, 5, 1, ... follows the rule “each
element is the previous element multiplied by three”?
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order, and then keep repeating the sequence: 6, 4, 5, 1, 3, 2, 6, 4, 5,... In other
words, it’s the same numbers in the same order, with a different starting point.

This, of course, is exactly what happens when we divide, say, 2 by
7!

The first remainder is 2 (2 = 0 × 7 + 2), and then we cycle through all the
remainders in exactly the same order, just starting with 2 instead of starting with
1.

And if you know what the remainder is, you know what the next digit in the
answer is. So if the remainders are going to keep repeating, the answer
is going to be the original answer, but with the digits rotated. Sound
familiar?

We’ve solved the puzzle of the twirling numbers, which was our initial mo-
tivation! But no need to stop here. On the way, we learned enough to keep us
going further.

3.12 Are there more numbers like this?

We’ve seen why 142857 is what we call a cyclic number, so we can look for
more of them. There are basically two criteria: 7 is a prime number, and 10 is
a generator of the multiplicative group modulo 7 (actually 3 is, in this case, but
10 ≡ 3 (mod 7), so it’s the same thing). So all we need to do is find a number
other than 7 that fulfills these criteria.

Let’s choose another prime number, and see if 10 is a generator in that mul-
tiplicative group. How about 11?

100 ≡ 1 (mod 11)
101 ≡ 10 (mod 11)
102 ≡ 1 (mod 11)

That was quick. If we start from 1 and keep multiplying by 10, we get only
two different elements of the multiplicative group modulo 11. As mathematicians
put it: 10 has order 2 in the group. If 10 is going to be the generator of the
group, it has to have order 11 - 1 = 10 (the “-1” is because it has to generate
every number modulo 11 except 0).
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It turns out 10 is not a generator of the multiplicative group modulo 13,
either.9 But the order of 10 in the multiplicative group modulo 17 is indeed
16, so it is a generator of the group. The digits in 1/17 that repeat are
“0588235294117647” (just look at 1/17 in a calculator). Since we’re work-
ing with 17 rather than 7, it now works for all factors from 1 through 16 instead
of merely 1 through 6. Quite frankly, this is awe-inspiring, so much that I’m
actually going to take the trouble to list them all, with the ’0’ in red to make it
easier to convince yourself of the truth of this marvel.

0588235294117647 × 1 = 0588235294117647
0588235294117647 × 2 = 1176470588235294
0588235294117647 × 3 = 1764705882352941
0588235294117647 × 4 = 2352941176470588
0588235294117647 × 5 = 2941176470588235
0588235294117647 × 6 = 3529411764705882
0588235294117647 × 7 = 4117647058823529
0588235294117647 × 8 = 4705882352941176
0588235294117647 × 9 = 5294117647058823
0588235294117647 × 10 = 5882352941176470
0588235294117647 × 11 = 6470588235294117
0588235294117647 × 12 = 7058823529411764
0588235294117647 × 13 = 7647058823529411
0588235294117647 × 14 = 8235294117647058
0588235294117647 × 15 = 8823529411764705
0588235294117647 × 16 = 9411764705882352
0588235294117647 × 17 = 9999999999999999

Do not try to pretend you’re not impressed.

3.13 We come, at long last, to the space robots

On September 5th, 1977, Voyager 1 was launched from Earth, on a mission to
explore the outer Solar System.10 On August 25, 1989, it passed the orbit of

9Go ahead and verify this yourself. You know you want to!
10Rather strangely, Voyager 2 was launched before Voyager 1. It made sense at the time, I

guess. The 70s were a strange, strange decade.



3.14. A HYPOTHETICAL SCENARIO OF THE UTMOST IMPORTANCE 21

Neptune, the farthest of our eight planets.11 It’s on a course that will send it by
the star system Gliese 445, 17.6 light years from earth, in 40,000 years.

Amazingly, it’s still functional, after more than forty years in vacuum and
temperatures near absolute zero. Right now, it is about 21 billion kilometers from
the sun, and in the time it took you to read this sentence it just travelled about
150 kilometers12 further. At that distance, the signals from Voyager moving
toward us at the speed of light take 20 hours13 to reach our antennas.

The power supply for this space probe came from the heat generated by
radioactive isotopes. Right now, the power generated is a little more than 200
Watts, or the power that is needed for two old-style incandescent lightbulbs. For
the whole space probe.

Out of the 200 Watts, the power allocated to communications is about 20
Watts, which is a little bit more than most night lights, but not much more.
And it uses this power supply to communicate all the way to ground control, on
Earth! My car radio gets staticky just because I drive underneath a bridge; can
you imagine how much static noise there has to be in the signal all the way from
outside the solar system?

So how do they do it? How do they get the correct information from the
plucky little probe? Let’s talk about that. This is a pretty deep and intricate
field of study, but we can go quite a ways into it, and when we do, we’ll meet
an old friend.

3.14 A hypothetical scenario of the utmost im-
portance

You’re at home. Someone from the other room shouts out and asks you if you
want pineapple on your pizza. What kind of question is that? You’re a right-
thinking person – you know that pineapple-flavored pizza is an abomination. How
do you react? Think fast, buddy.

You could just say “Nah”. The problem is, “Nah” sounds a lot like “Yah”,

11We can argue about this all day. Pluto is not a planet. You have to let it go.
12When writing about Voyager, I find myself using lots of italics. It’s just that cool.
13See?
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and if the person in the other room thinks that you said this, you will end up with
tropical fruit on your cheese and tomatoes. And the chances of being misheard
are even worse if there’s a lot of noise in the house: maybe from the traffic
outside, or perhaps someone’s playing some music.14

Here’s one thing you can try: repeat your answer multiple times: “NO NO NO
NO NO”. The chances are that this will communicate your feelings adequately
to whoever’s ordering.15,16

3.15 Back to the outer reaches of the Solar Sys-
tem

This gives us one possible way to help Voyager: we could program it to send
the data multiple times. For example, if Voyager wanted to send the bit “0”, it
would instead send the zero repeated five times: 00000.

Many of those bits would get corrupted on the way to Earth, but hopefully
not most of them. The information as received on Earth, in this scenario, would
look something like this: 01001.

Since there are two ones and three zeros in this set, we could figure out that
the bit that the probe wanted to send was actually a zero, by simple majority.

The problem with this solution is that it’s exceptionally inefficient. If the
space probe were to repeat every bit of data five (or more) times, then that
means the stream of information coming in to us would be five times slower.
That’s not a good thing.

Our strategy was an emergency measure we came up with on the spur of
the moment, designed to save us from getting pineapple on our pizza. Given
time and the efforts of some brilliant scientists and mathematicians, there are
better options for us when we design the trip to the star Gliese 445. What we’re
going to do right now is describe a system of error-correcting communication
called Reed-Solomon codes, which are actually what NASA chose to use for this
purpose.

14such as “Never Gonna Give You Up” by Rick Astley
15You’ll probably just end up with anchovies instead. That’s life.
16Is it obvious that I’m overcompensating to fit in because of social pressure? The truth is

that I actually like pineapple on my pizza. Seriously, what’s wrong it?
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3.16 Here comes another diversion, but it does
get to the point eventually

One of the great books of our times is the classic tome, “How to Avoid Huge
Ships” by Capt. John W. Trimmer. It’s exactly what the title says, a useful
compendium of various techniques to introduce into your life in order to not
get run over by an ocean liner or oil tanker. I’ve scrupulously followed the
recommendations found therein, and can truthfully claim that I’ve not even once
been swamped by a boat and forced to live the rest of my life on an uninhabited
desert island.

If you’re lucky enough to own a copy of this book, open it up. You will
find, among the first few pages, the ISBN17 number of the book: 088100019118.
That’s a lot of digits!

If you wanted to order the book by providing the ISBN number, it would be
very easy to make a mistake. If you did make a mistake, you’d go to your local
bookstore where you thought you ordered the book, but instead of pulling out
your copy of “How to Avoid Huge Ships”, they’d make a mistake and give you
instead, for example, “The Stray Shopping Carts of Eastern North America: A
Guide to Field Identification”, by Julian Montague. Now, “The Stray Shopping
Carts of Eastern North America: A Guide to Field Identification”, by Julian
Montague, is a terrific book, but I mean no disrespect when I say it’s certainly
no “How to Avoid Huge Ships”.

You’d be disappointed to see this, wouldn’t you? The local bookstore owner
would certainly notice that you were disappointed and then they would feel bad
too (local bookstore owners are notoriously empathetic).19

This is a terrible scenario, I know you’ll agree. And it’s to avoid situations like
this that the International ISBN Agency20 has given us a solution. All ISBN num-
bers are constructed in such a way as to be impervious to single digit mistakes.
What does this mean?

17International Standard Book Number
18For one particular edition. Also, later ISBN numbers were 13 digits rather than 10. We’re

going to focus only on 10 digit ISBN numbers for convenience.
19Yes, they’re real books. They were among the winners of the Bookseller/Diagram Prize

For Oddest Title Of The Year, and I think you’ll agree that they were both worthy winners
20No, I’m not kidding, it really exists. I guess the members of the International ISBN Agency

get to call themselves International ISBN Agents?
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Not all ten digit numbers are allowed to be valid ISBN numbers. The valid
ones have been chosen in such a way that that if you make a mistake when
writing an ISBN number, by getting any one digit wrong, the computer would
be able to look at the new number and realize that an error has been made.

For example, if 0881000191 is a legitimate ISBN number, then 6881000191
is not allowed for any other books, because it differs from 0881000191 in just
one digit. 0881005191 wouldn’t be allowed either. 6881005191, however, would
be allowed, since it differs from 0881000191 in two places.

That’s simple, of course. The trickier part is figuring out which numbers are
valid, out of all possible ten digit numbers.

A quick note: we will also be referring to valid numbers as “codes”. This
doesn’t mean a secret message that needs to get deciphered, it’s just a way of
referring to these strings of digits which are a subset of all possible strings of
digits. What we’re looking at here, in particular, is called an “error correcting
code”.

How does this work?

To make a 10 digit ISBN number, start with the first 9 digits, which have the
actual information about the book, and can be anything you want. Then add
the tenth digit in a special way: so that

10*(first digit) + 9*(second digit) + 8*(third digit)....+1*(tenth digit)

is a multiple of 11.21 This is called a check digit. This sum is a simple
example of a what is called a checksum.

Let’s assume that the first 9 digits are 088100019. Now,

10×0+9×8+8×8+7×1+6×0+5×0+4×0+3×1+2×9 = 164 ≡ 10
(mod 11)

So simply choose the last, tenth, digit to be 1. Then, for 0881000191:

10×0+9×8+8×8+7×1+6×0+5×0+4×0+3×1+2×9+1×1 = 165 ≡ 0
(mod 11)

Let’s look at a concrete example: maybe one of the numeral “1”s looks like a

21Sometimes, none of the digits from 0 through 9 will make this work, and the correct value
required is 10. In this case, they use an “X” as the last digit.
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“7”, so the ISBN is read as 0881000791. When we enter that mistaken number
into the computer, the first thing it will do is to calculate the sum:

10×0+9×8+8×8+7×1+6×0+5×0+4×0+3×7+2×9+1×1 = 183 ≡ 7
(mod 11)

When it sees that the sum is equivalent to 7 (mod 11) rather than zero, it
will realize that an error has been made, and let us know.

And it’s not just this case: if we’ve made an error in one of the digits, the
new sum

10*(first digit) + 9*(second digit) + 8*(third digit)....+1*(tenth digit)

can never be zero. For example, in the case we considered, when we thought
the “1” was a “7”, the sum increased by 6 × 3. The “6” comes from 7-1; the
“3” is the coefficient. This increase will never be equal to 0 modulo 11, because
it’s the product of two numbers that are less than 11, and 11 is a prime number.

Since the checksum was 0 for the original number, and the increase is not
equal to 0, the new checksum will obviously not be 0.

Note that this works because 11 is a prime, and is related to the fact that
we discussed earlier – that multiplication modulo 11 forms a group only because
11 is a prime number.

If phone numbers worked this way, if you made a mistake in one of the digits,
you’d never get a wrong number, you’d only get a message saying that you dialed
a number that doesn’t belong to anyone. It’s sad that this system wasn’t used
when phone numbers were first assigned.

In other words, we’ve increased the length of the message by only one digit –
11% – and we still are able to discover if single digit errors have been introduced
into the message. If we had done a crude repetition code, we would have doubled
each bit to achieve this same performance – an increase of 100

3.17 The next steps

This is a great first step, and works great for the numbering of books, but it’s
not yet enough for our space mission. Given how weak the signals are, it can
easily happen that we get two errors in a message stretch of 10 digits. In that
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case, two messages that are different at two digits can be confused with each
other.

To be able handle this situation, we need to be able to create lists of messages
of length 10 so that any two messages have at least 3 digits different from each
other. The good news is that once we figure out how to do this, we can extend
it easily – the same method that lets us choose a coding scheme so that any two
messages have at least 3 digits different from each other can be extended as far
as we like, until all 10 digits are different.22

To make life easier for us, we’re going to work in base 7. This means that the
length of the final word can be only 6 digits, including any check digits. With
this change, to find the check sum, the new formula is going to be

6 ∗ d5 + 5 ∗ d4 + 4 ∗ d3 + 3 ∗ d2 + 2 ∗ d1 + 1 ∗ d0 ≡ 0 (mod 7).

And here’s the next step: instead of having the coefficients be 6, 5, 4, 3,
2, 1 in order, we’re going to scramble them. It should be clear that doing this
doesn’t change anything critical. The new series is going to be 5, 4, 6, 2, 3, 1.
That is, a set of 6 digits is a valid, acceptable code sequence if

5 ∗ d5 + 4 ∗ d4 + 6 ∗ d3 + 2 ∗ d2 + 3 ∗ d1 + 1 ∗ d0 ≡ 0 (mod 7).

This works just as well. But why did we do that? A hint: you’ve seen this
sequence earlier in this chapter.

3.18 A Perfectly Reasonable Explanation

You got it!23 This sequence, 5, 4, 6, 2, 3, 1 is just the reverse of 1, 3, 2, 6, 4, 5,
which is the series of consecutive powers of 3, in the multiplication group modulo
7. We saw this when we were discussing the 142857 sequence; in particular, this
was the sequence of remainders when dividing 1 by 7.

22This extreme case, of course, is very easy. We only have two possible messages to choose
from: 0000000000 and 1111111111. This is an example of the “NO NO NO NO NO” code
we cleverly came up with a while ago.

23Actually, I have no idea whether you actually got it or not.
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So we let the first five numbers be arbitrary, but choose the sixth number
(d0) such that

35 ∗ d5 + 34 ∗ d4 + 33 ∗ d3 + 32 ∗ d2 + 31 ∗ d1 + 30 ∗ d0 ≡ 0 (mod 7) (3.1)

(In case you didn’t know, 30 = 1. In fact, any positive number raised to zero
is equal to 124.)

Just to be clear, so far we have not made any progress past what we were
already able to do with the ISBN numbers. We’ve just changed the order of the
coefficients, a very minor change that will be helpful later on.

Here’s another way to look at equation 3.1. For every sequence d5d4d3d2d1d0,
define a polynomial:

p(x) ≜ d5x
5 + d4x

4 + d3x
3 + d2x

2 + d1x+ d0 (3.2)

[By the way, the symbol ≜ means it’s a definition of p(x).]

For example, 532103←→ 5x5+3x4+2x3+1x2+0x+3. For every sequence,
there’s a polynomial; for every polynomial, there’s a sequence. We don’t even
bother to distinguish between them in most conversation.

You can see that the left side of 3.1 is what we get from 3.2 when we set
x = 3. So what eq. 3.1 is saying is simply that, if d5d4d3d2d1d0 is a valid
codeword, and p(x) is its related polynomial, then

p(3) ≡ 0 (mod 7) (3.3)

This becomes significant: because for any polynomial p(x), if p(a) = 0, then
p(x) is divisible by (x−a). So d5x5+d4x

4+d3x
3+d2x

2+d1x+d0 = q(x)(x−3).

In other words, the valid codewords are codewords whose polynomials are
divisible by (x− 3).

24Have you noticed how easy it is to confuse a superscript that means “footnote” with
a superscript that means “raise to a power”? An unscrupulous author could exploit this by
scattering these instances throughout a book that he wrote, and driving his readers crazy.
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This also makes the working very obvious. If two numbers differ in only one
digit, say the third digit from the left, then the difference between them is cx3,
where c is the difference between the correct and the incorrect versions of the
digit. And cx3 cannot be a multiple of x− 3.

But this gives us a way to generalize! To create a set of numbers that have
at least three digits different between each member of the set, choose another
number beside 3 – say, 4. The first four digits can be arbitrary, but now we
add two check digits. Calculate the fifth and sixth numbers so that the resulting
polynomial is a multiple of (x− 3)(x− 4):

d5x
5 + d4x

4 + d3x
3 + d2x

2 + d1x+ d0 = q(x)(x− 3)(x− 4)

Does this work?

3.19 You probably already know what the an-
swer’s going to be

No. It doesn’t.

3.20 Here’s why

Consider some simple examples. I’ll do the calculations for you.

If the first four digits are 0000, the fifth and sixth digits are 0 and 0, so the
sequence is 000000.

If the first four digits are 0001, the fifth and sixth digits are 0 and 5, so the
sequence is 000105.

If the first four digits are 0002, the fifth and sixth digits are 0 and 3, so the
sequence is 000203.

These sequences differ in two places, not three.
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3.21 Okay, do we give up now?

Never.

3.22 What went wrong?

Look at (x− 3)(x− 4):

(x− 3)(x− 4) = x2 − (3 + 4)x+ 12

= x2 − 7x+ 12

≡ x2 + 5 (mod 7)

←→ 0000105

So (x−3)(x−4) itself only has two non-zero coefficients, instead of the three
non-zero coefficients that most quadratic polynomials have. In other words, the
distance from (x−3)(x−4) to 0 is just two digits, instead of three. So we failed
coming right out of the gate.

Our first factor was (x − 3), because 3 is a generator of the multiplication
group modulo 7. That was a good choice.25

We chose to use (x− 4) as the second factor in the polynomial to generate
our code words, but it turns out not all numbers are created equal. In particular,
3 + 4 ≡ 0 (mod 7), so one of the coefficients in (x− 3)(x− 4) is zero. Which
means that the codewords are not as far apart from each other as we want.

3.23 Doing it right

Simply fixing this problem is easy: just choose a number other than 4, so that
the sum is no longer 0.

But this becomes more difficult as get into larger code words and more error
correction. If we want to generate codewords that are 4, 5, 6 or more digits

25Yay us.
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apart from each other, how do we choose the right numbers?26 If we multiply
(x− 3)(x− 4)(x− 1)(x− 2)(x− 7)(x− 8)(x− 12)(x− 13)(x− 15) (modulo
17), that will be a polynomial of order 9, which has 10 coefficients. How can we
be sure that all of them are not zero, other than trial and error?

In fact, for the actual Voyager mission, there were 32 check digits, and they
were effectively working in base 256. You can imagine this would be very difficult
to design for without some further insight.

Luckily,27 there’s a very clever trick. Start with any generator (in our example,
it was 3), so the first factor is (x − 3). Then, for the next factor, we choose
(x−32); then (x−33), (x−34), etc – that is, consecutive powers of the generator.

Why does this work? I’m glad you asked.

We’re going to prove that this works. In order to not get lost in the depths
of abstraction, we’re going to make some assumptions for the values that we’ll
be using:

� we’ll be working modulo 7

� we’re going to try to create code words that are 6 digits long

� we will require that any two legitimate code words differ from each other
in at least 4 digits.

It’s important to realize that none of these values that we’ve chosen (7, 6
and 4) are critical: our proof is actually a general proof.28

Also remember that we will be working modulo 7 for all of the proof. And
we will have no compunctions in switching back and forth between codes as
sequences of digits, and codes as polynomials, with no warning whatsoever.
Which representation we mean should be clear from context.

Let’s begin! Here’s some setup first.

26To go further out, of course, we can no longer work modulo 7, because base 7 codewords
can only be 6 digits long. That’s not a problem; you can work in larger systems. We can
actually use any prime, or any power of a prime.

27Luck actually has nothing to do with this. A lot of thought went into this.
28For whatever it’s worth: these numbers, 764, also do not form the combination that opens

a locker at Grand Central Station containing the mythical long-lost lantern of the legendary
Cynical Greek philosopher Diogenes. So don’t waste your time trying.
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1. We start by finding a generator of the multiplicative group modulo 7. We
know one of these generators: it’s 3. But it’s actually easier to not choose
a specific value. Instead we’ll call it α. You can imagine a 3 everywhere
you see α if you want to.

2. Our goal is to create a set of code words, such that any two members of
the set differ in at least four digits.

3. We will say that allowable code words are only those whose polynomials
are multiples of (x − α)(x − α2)(x − α3). Call this polynomial g(x); it’s
often called the “generator polynomial” of the code. (Please don’t confuse
this with the generator α of the multiplicative group modulo 7.)

In other words, every polynomial of the form h(x)g(x) is a legitimate code
word.

4. If q1 = h1(x)g(x) and q2 = h2(x)g(x) are legitimate code words, then

q1 − q2 = h1(x)g(x)− h2(x)g(x)

= [h1(x)− hz(x)]g(x)

= h3(x)g(x)

where h3(x) = h2(x) − h1(x) is also a polynomial. So if q1 and q2 are
legitimate code words, then q1 − q2 is also a legitimate code word, be-
cause it’s also a polynomial multiplied by the generator polynomial. [And
remember, we find q1− q2 by doing a subtraction at each digit, modulo 7.
For example, 3− 6 = 4, because 6 + 4 = 3, modulo 7.]

5. In other words, if the difference between any two code words has at least
4 non-zero digits, then every code word has at least 4 non-zero digits, and
vice versa. Because the difference between any two code words is another
code word.

6. Assume that there is a code word q that has less than 4 non-zero digits. If
you write the code word as a polynomial, that means that the polynomial
has less than 4 non-zero coefficients. To make things as specific as possible,
assume that polynomial for the code word q is p0+p1x+p2x

2+p3x
3+ ....

And of these coefficients, less than 4 are non-zero. So let’s assume, for
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the sake of concreteness, that all the coefficients except p0, p2 and p5 are
zero.

Then, viewed as a polynomial, q = p0 + p2x
2 + p5x

5.

Spoiler: what we’re going to show is that if the other coefficients are zero,
then p0, p2 and p5 are zero too, so q is all zeros. Which means that if
q = q1− q2, then q1 = q2. Conversely, if q1 ̸= q2, there have to be at least
four digits different between them.

The preliminaries now over, let’s start with the actual proof.

3.24 The actual proof, as promised

Step 1: Recap of what we just mentioned

1. α is a generator of the multiplication group modulo 7 (it could be 3, for
example, but we choose to leave it as a symbol).

2. The generator polynomial is:

g(x) = (x− α)(x− α2)(x− α3) (3.4)

3. q is a code word, so its polynomial is a multiple of the generator polynomial.

q(x) = h(x)g(x) (3.5)

(And conversely, any multiple of the generator polynomial is a legal code
word.)

4. Every coefficient of the polynomial for q is zero, except for p0, p2 and p5.

q(x) = p0 + p2x
2 + p5x

5 (3.6)

We’re going to eventually prove that under these conditions, p0, p2 and p5
must also be zero.
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Step 2: q(x) is zero for α, α2, α3

This is pretty obvious. If you look at eq. 3.4, you can see that g(x) is zero for
α, α2 and α3. And eq. 3.5 says that q(x) is a multiple of g(x).

So let’s write that out. We’re going to use eq. 3.6 to show us what q(x) is,
and set that to zero when x = α, α2, α3.

p0 + p2(α)
2 + p5(α)

5 = 0 (3.7)

p0 + p2(α
2)2 + p5(α

2)5 = 0 (3.8)

p0 + p2(α
3)2 + p5(α

3)5 = 0 (3.9)

Step 3: Swap the exponents

We know that (ab)c = ab×c = (ac)b. So, for example, in eq. 3.8, (α2)5 = (α5)2.
Let’s do that throughout the three equations.

p0 + p2α
2 + p5α

5 = 0 (3.10)

p0 + p2(α
2)2 + p5(α

5)2 = 0 (3.11)

p0 + p2(α
2)3 + p5(α

5)3 = 0 (3.12)

Let’s simplify this set of equations by setting β = α2, and γ = α5.

p0 + p2β + p5γ = 0 (3.13)

p0 + p2β
2 + p5γ

2 = 0 (3.14)

p0 + p2β
3 + p5γ

3 = 0 (3.15)

Step 4: Take a deviously clever linear combination of these equations

First, define a (slightly mysteriously motivated) new polynomial

r(x) ≜ (x− 1)(x− β) (3.16)



34 CHAPTER 3. THE NUMBER THAT DANCED

We know that r(x) is a quadratic polynomial (that is, the highest power is
2). So we can write

r(x) = a+ bx+ cx2 (3.17)

and we don’t even have to bother to calculate the exact values of a, b and c
for now – we just have to remember that this is how a, b and c are defined.

Now take (a× eq. 3.13) + (b× eq. 3.14) + (c× eq. 3.15). And then
regroup the terms so terms in p0 are together, terms in p2 are together, terms in
p5 are together:

a(p0 + p2β + p5γ) + b(p0 + p2β
2 + p5γ

2) + c(p0 + p2β
3 + p5γ

3) = 0 (3.18)

⇒ p0(a+ b+ c) + p2(aβ + bβ2 + cβ3) + p5(aγ + bγ2 + cγ3) = 0 (3.19)

⇒ p0(a+ b+ c) + p2β(a+ bβ + cβ2) + p5γ(a+ bγ + cγ2) = 0 (3.20)

Step 5: The part where the magic happens

From eq. 3.16 and eq. 3.17:

a+ bx+ cx2 = (x− 1)(x− β) (3.21)

In eq. 3.21 set, firstly, x = 1, giving:

a+ b+ c = (1− 1)(1− β) = 0 (3.22)

and now do it again, but set x = β instead of x = 1, giving:

a+ bβ + cβ2 = (β − 1)(β − β) = 0 (3.23)

(These equations were the motivation for defining r(x) as we did.)

Now look at eq. 3.20, keeping eq. 3.22 and eq. 3.23 in mind.

p0(a+ b+ c) + p2β(a+ bβ + cβ2) + p5γ(a+ bγ + cγ2) = 0 (3.24)

⇒ p0 × 0 + p2 × 0 + p5 × r(γ) = 0 (3.25)

⇒ p5γ(γ − 1)(γ − β) = 0 (3.26)
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It is obvious, and yet profound, that γ ̸= 1, and γ ̸= β. The reason is that
γ = α5, and β = α2. Remember that α is a generator of the multiplicative
group, so the different powers of α will be different, right until you reach α6,
which is back to 1. This – THIS! – is why we chose α to be a generator of the
group lo all those many steps ago.29

So eq. 3.26 says that p5 multiplied by three non-zero numbers, gives an
answer of zero. But 7 is a prime number, so the set of non-zero numbers under
multiplication modulo 7 forms a group: the product of any two non-zero numbers
cannot be zero.30

So p5 has to be zero. But we can used the same method to show that p2
and p0 are zero, too!

To show p2 = 0, choose r(x) = (x− 1)(x− γ), and find the coefficients a,
b and c from that polynomial instead.

And to show that p0 = 0 , choose r(x) = (x − β)(x − γ), and find the
coefficients a, b and c from that polynomial instead.

Step 6: Put it all together

To sum up:

� A code word is one for which the polynomial is multiple of the generator
polynomial similar to eq. 3.4. Call the order of that generator polynomial
n.

� If that polynomial has less than n+1 non-zero coefficients, than all of the
coefficients are zero. It’s impossible for exactly 1, 2, . . .n coefficents to
be non-zero.

� The difference between any two code words is another code word, because
they are all multiples of the generator polynomial.

� So either two code words are different in at least n+1 locations, or they’re
completely identical in all locations.

29I really hope you’re impressed.
30Note that this would NOT be true for non-primes. For example, 2 × 3 ≡ 0, modulo 6

(remember the multiplicative table modulo 6 we tried earlier?).
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� And that gives us an efficient way of talking in noisy environments, so that
errors can be corrected for.

� And that lets us talk to our space probes, the extensions of the human
race we’ve sent to go where we currently cannot, to explore the unknown,
to expand our home.31

� And what took us here, what started our journey to the outer edges, was
that we noticed that a certain number, when multiplied, gives . . . interesting
results.

31Yes, I’m underselling the applications of error correcting codes. Space probe communica-
tion may not be the most useful application, but it’s certainly up there for the coolest.



Chapter 4

Space and Time are Child’s Play

4.1 A Very Good Place to Start

Many books claim that they will start at the beginning. How many really, actually,
definitively, do? This book does. We’re going back, back before middle school,
back before kindergarten. Back to the very first toys you may have played with.

You may have seen this toy: a box with various shaped holes in it, and pieces
with the same shapes that could fit into the right holes.

A toy for children . . . or cutting edge mathematics?

37



38 CHAPTER 4. SPACE AND TIME ARE CHILD’S PLAY

Here’s the triangle from that set. It has a smudge on one of its corners,
which is hopefully just some jam or something. We can use this little smudge to
keep track of which direction that particular vertex is pointing.

The triangle piece, with a little smudge.

Here’s a simple question to start us on our way: in how many ways can this
piece be fitted into the slot? We’ve already seen one orientation that works, here
are two more:
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Pretty simple: there are three ways of orienting the triangle so that the piece
fits through the slot.

4.2 Moving on from numbers

We talked about groups earlier; our groups were Cyclic Groups, formed by addi-
tion or multiplication of the numbers modulo some base. These aren’t the same
as the numbers we’re used to (3× 4 = 5 in the multiplication group modulo 7,
not 3× 4 = 12), but they’re pretty similar, and clearly derived from numbers.

But groups can be more abstract. One of the most common ways groups are
formed is from transformations. In particular, consider the set of transforma-
tions of some object that leave some property of object unchanged.

Did you notice how vague this description is, and how exceptionally unhelpful
it is in terms of understanding? Let’s look at a more concrete example.

We have above a piece for our puzzle, in the shape of a triangle. Right now,
our smudge is to the upper right,1 and it’s ready to get through the slot. That’s
what we’re going to take as our property: “being in the right position to pass
through the opening”. So what kind of transformation will keep that property
unchanged?

Not a very difficult question: we can rotate it 120◦ clockwise (that’s one
third of a full circle), and it’s ready to go through the opening again. This time
the smudge is on the upper left, but we never chose the position of the smudge
as a property we wanted to keep unchanged, so that’s okay. So the first element
of our group is the transformation – that is, a rotation of 120◦ clockwise. Don’t
confuse this with the orientation of the piece, that is, which direction the smudge
is pointing. Only the change in orientation is relevant.

There’s another transformation that keeps unchanged the property of being
able to fit through the opening, a rotation of 120◦ counter-clockwise.

There’s another word for a property of an object that remains unchanged
under a transformation: that’s a symmetry. So the rotations by 0◦, 120◦ and
240◦ are the only rotations of the triangle that maintain the position of the
equilateral triangle as able to fit through the opening. In ordinary conversation,

1Really hoping the smudge is just jam.
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symmetry is usually used to refer specifically to mirror symmetry, like the letters
A, H, or M2. In mathematics, the word is more general and means any property
that can remain unchanged after some transformation.

4.3 We get a little bit Zen

Is there anything else that we can do that keeps this property unchanged?3 Yes:
nothing.

That is, if the triangle can fit through the opening, then keeping it in that
position without making any changes will quite obviously keep it in position to
go through the opening. This counts as a transformation in much the same way
that zero counts as a number. You could ask me, “How many keys do you have
on your keychain?” and the answer would be 10. Or you could ask me, “How
many porcupines do you own as pets?”, and the answer, truthfully, is zero.

4.4 We don’t have to pay Mr. Cayley royalties
every time we use his table

So these three actions (do nothing, rotate 120◦ clockwise, rotate 120◦ counter-
clockwise) are the three things we can do to that will still keep the piece in
position to fit through the opening. Let’s give them easier names to call them.
By tradition, the transformation do nothing is called e. Let’s give the name a to
rotate 120◦ clockwise, and b to rotate 120◦ counter-clockwise.

You can see that e, a, and b form a group, because if you rotate clockwise
120◦ and then rotate clockwise 120◦ again, you’ve done the same transformation
as if you rotated counter-clockwise by 120◦. In other words, aa = b. This is
sometimes written as a◦a = b, where a◦b simply means, “do the transformation
b, and then the transformation a”.

Similarly, b ◦ b = a.

2Random question: what’s the longest word you can think of that uses only mirror sym-
metric letters? For left-right symmetric letters, off the top of my head, I see MAMMOTH. For
up-down symmetric letters, I see DECODED. I suspect you guys can do a lot better.

3“this particular property”, of course, refers to being able to fit through the opening.
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◦ e a b

e e a b
a a b e
b b e a

Table 4.1: Rotation group for the triangle

Do you recognize this? You might. Here’s an old friend, the addition group
modulo 3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Table 4.2: Addition group modulo 3

Yes, they’re the same. Remember what we called this correspondence, iso-
morphism. Of course, it’s not restricted to triangles. The group of rotations that
respect the symmetry of the square is isomorphic to the addition group modulo
3, and etcetera.

4.5 Why Transformations form a Group

As a reminder, here’s the definition of a group from before: it’s a set along with
an operation (such as addition or multiplication) that obeys the following rules4:

1. The set is closed under the operation.

2. There is an identity element

3. Each element has an inverse.

4This is from the previous chapter. You do not have to be embarrassed you don’t remember
them all.
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4. The operation is associative.

Now, let a and b be two particular transformations of an object that respect
some symmetry. Then here are some statements you can make:

1. If you apply transform b, then a, then the result is also a transformation
that respects that symmetry.

[For example, for the letter “H”, if you take the mirror image horizon-
tally, the shape remains the same. And if you take the mirror image
vertically, the shape remains the same. So if you take the mirror image
vertically and then horizontally, the shape has to remain the same.]

2. You can choose to do nothing at all.

3. Anything you do, you can also undo (that is, going back to the starting
position is a legitimate transformation, too).

4. If you apply a lot of transformations, only the order matters, not how
you group them together.

These are pretty general statements, and they explain why transformations
and groups are so closely related.

4.6 A Smooth Operator

This is a circle:
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And this is the same circle after being transformed by a rotation of 120◦

clockwise:

Here’s the circle after being rotated by 1◦ counter-clockwise:

Would you agree that these images are seriously lacking in any sort of drama?
The conclusion will not be a shock: if you rotate the circle by any angle whatso-
ever, it stays the same. This is different from the symmetries that we’ve looked
at earlier in this chapter, which were discrete: the groups that we looked at had
a finite number of elements in them.

How do you describe this group? We can’t make a Cayley table; there are an
infinite number of elements in this group.

But instead, we can specify a general set of rules for the group. If the
rotation is by A◦, then let the element of the group be R(A). That is, R(A)
is the transformation, “Rotate by A◦ clockwise”.Then there are two rules that
specify the group:

R(A1)R(A2) = R(A1 + A2) (4.1)

R(360◦) = R(0◦) (4.2)

None of this is surprising!

� The first rule just says that if you rotate clockwise by 20◦, and then ro-
tate clockwise by 15◦ degrees, then it’s the equivalent of having rotated
clockwise by 35◦ degrees.
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� The second rule just means that if you rotate 360◦, it’s the equivalent of
having not rotated at all.

4.7 Other ways to describe this group

As we just described, we can define the group of rotations by eq. 4.1 and eq. 4.2.
But there’s another way to define the group, and that other way is perhaps more
fundamental, and easier to understand. That other way is in terms of symmetry.

As we just recently happened to have mentioned,5 the set of transformations
that keep some property unchanged forms a group; we also say that these trans-
formations “respect a symmetry”. So is there a property that you can think of
that remains unchanged during rotations?

Why yes, there is. When you rotate around a point, the distance from the
center to any other point doesn’t change. (Not just that, but if there are multiple
points rotating around a center, the distance between any two points doesn’t
change either. We’re not going to be pointing this out a lot, but it’s useful to
keep in mind.)

So: the group of rotations, can also be described as the group of transfor-
mations that don’t change distances.6

This is nice! Thinking in terms of the symmetry is a very, very useful tech-
nique. It’s a way of gaining a better understanding of a problem – as you might
have realized, it’s a simpler definition than eq. 4.1 and eq. 4.2 are.

We’re going to care mostly about the distance from the center of the rotation,
and there’s another way of describing that, using coordinates. If a point starts
out with coordinates x and y, then the distance from the center is

√
x2 + y2.

And if there are two points, (x1, y1) and (x2, y2), the distance between them is√
(x1 − x2)2 + (y1 − y2)2

So: the group of rotations, with a little impreciseness, can also be described
as the group of transformations that don’t change x2 + y2.

5What a coincidence.
6Mirror reflections don’t change distances either, but we will ignore them going forward.

Including or excluding them won’t change what we learn significantly.
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4.8 The Simplest Trigonometry

Here’s a reminder of some very simple trigonometry that we will be using later.
Please don’t stop reading this book.7 We’re just going to state some basic facts,
for the benefit of anyone who’s not familiar.

4.9 Definition of Sin and Cos

Consider a circle of radius R. Let P be a point on that circle, with coordinates
(x, y), and assume that OP makes an angle of A with the positive x-axis.

1 2 3 4 5

x

1

2

3

4

5

y

A B

C

len(AC) = 5

len(AB) = 4

len(BC) = 3

Figure 4.1: sinA = 3/5; cosA = 4/5

Then here are some definitions for the sine, cosine and tan of the angle A;

7Please?
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and a reminder of what Pythagoras’s theorem says for the triangle.

cosA = x/R (4.3)

sinA = y/R (4.4)

tanA = y/x (4.5)

A = arctan(y/x) (4.6)

R2 = x2 + y2 (4.7)

4.10 Relation between Sin and Cos

Let’s take a further look at that last line, x2+y2 = R2 (Pythagoras’s Theorem).
That tells you that x2/R2 + y2/R2 = 1, or

sin2A+ cos2A = 1

for all values of A.

Please remember this; we’ll be using it, and some interesting variations of it,
in the future.

4.11 Sum of Two Angles

I’m just going to give you the formula and not worry about proving this. Here it
is:

If you know the sin and cos of two angles, A1 and A2, you can find the sin
and cos of their sum, A1 + A2:
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sin(A1 + A2) = sin(A1) cos(A2) + cos(A1) sin(A2)

cos(A1 + A2) = cos(A1) cos(A2)− sin(A1) sin(A2)

Enough preliminaries8!

4.12 A Mathematical Description of Rotations

In this section, we’re going to answer this question: if we know where a point is
(that is, we know its coordinates), and we rotate it around the origin by a certain
angle, what are its new coordinates going to be?

8I’m glad you’re still with us. I mean it.
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O
1 2 3 4 5

x

1

2

3

4

5

y

A = (x, y)

A′ = (x′, y′)

θ◦

Figure 4.2:

In other words, we know the coordinates of A, which are (x, y). We know
the angle θ that we’re rotating A by. We want to find the coordinates of the
new point A′, (x′, y′).

Let’s find a way to describe these rotations mathematically.

Here’s the setup: point P has coordinates (x, y). Line Segment OP (OP )
has length R, and makes and angle of A with the positive x-axis.

We rotate it by an angle B, and point P becomes point P ′. The coordinates
of P ′ are (x′, y′). The question is, how do you find x′ and y′ in terms of x, y,
and B?
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4.12.1 Step 1: Find R and A

We already know this!

R =
√
x2 + y2 (4.8)

A = arctan y/x (4.9)

x = R cosA (4.10)

y = R sinA (4.11)

4.12.2 Step 2: Find the new R′ and A′

We see that rotations keep x2 + y2 constant, which means that R is constant.
So to find the new point after a rotation, all we do is keep R the same, and
change A. Let’s change it by a certain amount, say, B. Then the new distance
from the origin and angle, R′ and A′, are given by

R′ = R

A′ = A+B

4.12.3 Step 3: Find x′ and y′

x′ = R cosA′

= R cos(A+B) Because A′ = A+B
= R(cosA cosB − sinA sinB) Expansion of cos(A+B)
= (R cosA) cosB − (R sinA) sinB Regrouping the terms

=⇒ x′ = x cosB − y sinB eq. 4.10 and eq. 4.11

In the same way, if you do the calculations,9 you can see that

y′ = x sinB + y cosB

9Hint, hint.
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Wait.

We just reached an important conclusion, but we didn’t . . . mark the occasion.
Let’s go ahead and say the same thing once more, shall we, but we’ll frame it.10

x′ = x cosB − y sinB

y′ = x sinB + y cosB

Much better.

Here’s the important thing to take from the derivation: we used two im-
portant sets of facts in deriving it. Spoiler, we will be coming back to look at
this.

1. � x = R cosA

� y = R sinA

2. � sin(A1 + A2) = sin(A1) cos(A2) + cos(A1) sin(A2)

� cos(A1 + A2) = cos(A1) cos(A2)− sin(A1) sin(A2)

4.13 Some simple results

We’re going to look at a couple of simple situations, and what can happen to
the x- and y- coordinates when the observer gets rotated. If this seems way too
obvious, please stick around anyway, we’ll get to something more interesting very
shortly!

Here’s something to get used to: rotating a point by an angle of A clockwise,
is mathematically the same thing as rotating the axes by an angle of A counter-
clockwise. Sometimes we’ll look at rotations in the first way, sometimes in the
second.11 Again, mathematically and conceptually, there’s very little difference.

10This is the mathematics equivalent of popping open a bottle of champagne and spraying
it everywhere.

11We will switch from one way to another with very little warning, and even less remorse.
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1. Here are two points, P andQ, in fig. 4.3. They have the same x-coordinate,
which is 3. And p′ and q′ are the x co-ordinates of P and Q as seen by
another observer who has rotated compared to the first one.

O
1 2 3 4 5 6 7 8

x

1

2

3

4

5

6

7

8

y

P

Q

P ′
Q′

Figure 4.3: P and Q have the same x-coordinate with respect to one set of
coordinate system. But as seen by another observer (red coordinate system),
they have different x coordinates.

No surprise: after rotation, they don’t have the same x-coordinates any
more.

2. Another situation, in fig. 4.4: A has smaller x-coordinate than B.
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A

BA′

B′

xax′a
xbx′b

45◦
45◦

Figure 4.4: xA < xB, but x
′
A > x′

B

But after rotation, A′ has a larger x-coordinate than B′ does. Really, no
shock here at all.12

4.14 How to think like a mathematician

Well, that was easy. Now, what can we do to make it more difficult?

12Did you notice that I rotated the axes in the previous diagram, and rotated the points
themselves in this one? Part of the reason for that is that it made it more convenient for me
to draw those particular diagrams. I’m not exactly Michaelangelo.
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4.15 Jeez

We’ve done a good job studying simple rotations in two dimensions.13 There’s
always a next step, though. How can we move beyond transformations in two
dimensions, that keep x2 + y2 constant?14

There are a couple of possibilities that come to mind. For example, what if
we rotated something in three or more dimensions, instead of two? Or, what
if we kept x2 − y2 constant instead of x2 + y2? As it turns out, both of these
possibilities are extremely interesting and take us fun places.15 In this chapter,
we look at transformations that keep x2 − y2 constant.

4.16 Just a Minor Change

So let’s look at transformations that keep x2−y2 constant. Effectively, instead of
defining the “distance” as x2+y2, we’re redefining it as x2−y2. And again, we’re
looking for transformations that keep the distances between all points constant,
except we’re doing it with the new definition of distance.

As a preliminary, however, we will need a whole new set of functions.

4.17 A Whole New Set of Function

Similar to sin and cos are three new functions, the “hyperbolic sine”, the “hy-
perbolic cosine”, and the “hyperbolic tangent”, or sinh, cosh and tanh. We’re
going to define them here, but in case you’re not familiar with exponentials, please
don’t worry. The exact definition isn’t as important as some of the properties of
the functions, that we’ll describe below.

By the way, the ≜ sign means “is defined as”. In other words, we don’t ask

13You have to admit it was pretty easy.
14Reminder: we’re using this as simple shorthand for “keeps distances between all points

constant, i.e. keeps all values such as (xA−xB)
2 +(yA− yB)

2 constant, for all points A and
B”.

15Seriously, what did you expect. It was pretty obvious that we wouldn’t have spent that
much time studying something as simple as rotations in two dimensions if it wasn’t leading
somewhere.
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why these following equations are true – it just says that the right hand side is
the definition of what is on the left hand side.

And the e that is used in the following definitions is Euler’s number, which
is approximately 2.71828. . . . It’ s an important number in mathematics, com-
parable to π, but if you’re not familiar with it, you don’t have to worry about it
to follow what comes next.

sinhA ≜
eA − e−A

2

coshA ≜
eA + e−A

2

tanhA ≜
sinhA

coshA

If sinhA = x, then we turn it around and also write A = arcsinh x; and
similarly for cosh and tanh.

What matters most about this definition is that cosh2A− sinh2A = 1. You
can check it for yourself from the definition.16 Compare it to what we saw earlier,
cos2A+ sin2A = 1 – it’s similar, but has a minus sign rather than a plus sign.

There was just one more characteristic of the sin and cos functions that we
used in understanding rotations, which is how they behave for the sum of two
angles. So let’s detail that here for the hyperbolic functions, too.

sinh(A1 + A2) = sinhA1 coshA2 + coshA1 sinhA2

cosh(A1 + A2) = coshA1 coshA2 + sinhA1 sinhA2

As before – pretty similar to what we had with sin and cos but with a switch
in sign.

16But only if you want to.
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4.18 The New Rotation, mathematically

We take the same steps as we did earlier, with just a few minor changes.

As a recap, when we kept x2 + y2 constant, we chose two new quantities, R
and A, so that

R2 = x2 + y2

x = R cosA

y = R sinA

This is possible because of the property: sin2A+ cos2A = 1.

We’re going to choose two new quantities now, too. The first is a pretty
obvious choice, now we take R2 = x2 − y2. Unlike x2 + y2, x2 − y2 can
sometimes be negative, so just for now, we are going to just look at values of
(x, y) where x2 > y2. We’ll come back and look at y2 > x2, but it won’t really
make much of a difference.17 And then we’ll deal with the case where x2 = y2.

4.19 Case 1: x2 > y2

4.19.1 Step 1: Find R and A

We’re going to define the numbers R and A by two new equations. When we did
this before, for x2+y2, we understood R to be distance, and A to be angle. But
for x2− y2, there’s no such obvious interpretation of what the numbers “mean”
– but we can define them by these equations anyway.

R2 ≜ x2 − y2 (4.12)

A ≜ arctanh(y/x) (4.13)

17Spoiler alert: I’m not even going to do it, I’ll just tell you you can work it out yourself if
you want to. Be prepared. And if you’re more comfortable with complex numbers, you don’t
really have to treat these two cases separately.
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With these new quantities defined, we can see what x and y are:

x = R coshA (4.14)

y = R sinhA (4.15)

It’s actually easy to plug eq. 4.14 and eq. 4.15 back into 4.12 and 4.13 and
see that those two equations are satisfied18.

4.19.2 Step 2: Find the new R′ and A′

Our transformation is going to keep x2−y2 constant, so it’s not going to change
R. If it changes A by the amount B,

R′ = R

A′ = A+B

4.19.3 Step 3: Find x′ and y′

x′ = R coshA′

= R cosh(A+B) A′ = A+B
= R(coshA coshB + sinhA sinhB) Expansion of cosh(A+B)
= (R coshA) coshB + (R sinhA) sinhB Regrouping the terms

=⇒ x′ = x coshB + y sinhB eq. 4.14 and eq. 4.15

Solving for y′ is very similar, and you can do it yourself.19

x′ = x coshB + y sinhB (4.16)

y′ = x sinhB + y coshB (4.17)

18Sigh. You already know what I’m going to say: check it yourself!
19...
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Technically, we should also confirm that the distance between any two points
remains the same with this transformation, not just the distance of one point
from the origin. It’s not conceptually any different; if you can do one, you can
do the other, so we’ll skip it.20

4.20 Case 2: y2 > x2

Just switch x and y around so that x = R sinhA and y = R coshA. The steps
are the same, and in fact, the result is still exactly the same. You can go through
the steps yourself.21

4.21 Case 3: x = y

This is pretty similar, too. In this case, R2 = x2 − y2 = 0, so any point (x′, x′)
will also have a distance of 0 from the origin. So choose any other point P (say,
(1,0)), and set up an equation that says the distance of (x, x) from P has to
be the same as the distance of (x′, x′) from P – in other words, the distance
between those two points cannot change after the transformation.

This takes no extra conceptual insight, so I’m not going to go through all the
steps. The answer turns out to be the same as the other cases. So in all three
cases,22

x′ = x coshB + y sinhB

y′ = x sinhB + y coshB

20To be precise, I’ll skip it. You’re welcome to dive right in.
21Or not. Whatever.
22Here comes the frame.
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4.22 What do the new “rotations” do?

We’re going to drop the quotation marks on “rotations”. They look sort of
sarcastic, and you can’t keep mentally making quotation marks with your fingers
every time you come across them. Just remember that the new distance is defined
as x2− y2, and in this section, when we say rotation, we mean a transformation
that keeps the new distance constant.

Doing the mathematics was fun, but we also want to go beyond that and
develop a feeling for what these transformations look like. To help us do that,
let’s look at a few simple cases.

4.22.1 The simplest possible case

Here’s a point, P , starting off on the x-axis, with coordinates (1,0). After
a rotation by an “angle”23 of B, it moves to point P ′. To be specific, let’s
choose B to have the suspiciously specific value of 0.6931.24 For this value of
B, coshB = 1.25, and sinhB = 0.75, so P ′ = (1.25, 0.75)25.

23Oops. We did agree to avoid the quotation marks.
24In case you are familiar with logarithms, this is simply the natural logarithm of two, but

don’t worry about it if this is new to you.
25Obviously, the reason we chose B = 0.6931 is that it produces nice clean values of sinhB

and coshB.
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Figure 4.5: P moves to P ′

4.22.2 A generalization

Ordinary rotations keep x2 + y2 constant, so points move along paths where
x2 + y2 is constant – which are circles.



60 CHAPTER 4. SPACE AND TIME ARE CHILD’S PLAY
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Figure 4.6: After rotation, a point on any contour will move to another point on
the same contour.

Our new rotations keep x2 − y2 constant, so points move along paths where
x2 − y2 is constant. These are known, in general, as hyperbolas, and they look
like this:
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Figure 4.7: After the new transformations, a point on a contour will move to
another point on the same contour.

Note that the contours look a little different in the different cases: x2 > y2,
x2 < y2, x2 = y2 (blue, red, and green, respectively).

4.22.3 Pairs of points

The effects of the new rotations on pairs of points are pretty similar to what we
looked at with the old rotations – but the differences are interesting!

We’ll just look at a simple example. Here are two points, P and Q. They
have the same x-coordinates. And P ′ and Q′ are what we get after P and Q are
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rotated by the value of B = 0.6931 – or, as seen by another observer who has
rotated compared to the first one. Remember, these two situation are the same.

O
-1 1 2 3
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1

2

3

y

P

Q
P ′

Q′

Figure 4.8: P ′ and Q′ no longer have the same x-coordinate after transformation.

Shock, shock: P and Q no longer have the same x-coordinate. The same
thing would happen if they had started with the same y-coordinate.

4.23 Is This Real Life, or Just Fantasy?

4.23.1 This Entire Section Is Just A Blatant Setup For
The Big Reveal That Comes Next

Wow, wouldn’t it be weird if real life worked like this?
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4.23.2 As Promised, Here’s The Completely Unexpected
Big Reveal

It does.

4.23.3 I Feel That That Requires Some Elaboration

These new, weird rotations do in fact describe the world that we live in. But
to see how, we’re going to have to look at them in a very different, slightly
disorienting way: the x and y coordinates are no longer going to describe the
x-coordinate and the y-coordinate. Instead, they describe the x-coordinate and
time.

4.23.4 Let’s Back Up A Bit

In 1905, a young patent clerk in Switzerland built on several years of experiments
and hypotheses and proposed something radically simple: that the speed of light
is a constant, and that anyone who measured it would always come up with
the same answer. Albert Einstein turned out to be right; in hindsight, he was
probably not achieving his full potential working as a patent clerk.

This proposal, of the constancy of the speed of light, sounds obvious, but it’s
not. To understand why this is so radical, you can contrast it with the speed of
sound. If you are traveling in the direction of a sound wave, it would seem to you
to be traveling slower with respect to you. If you travel fast enough, you could,
in fact, catch up with the sound – that’s called breaking the sound barrier, and
is celebrated with a loud noise called a sonic boom.26

If the speed of light, c, is a constant as Einstein proposed, then that could
never happen. You could never catch up with a light beam, because it would
always be moving faster than you, by precisely the speed of light, c. No matter
how fast you were moving27.

26...that really annoys anyone who happens to live right below you while you’re making the
sound.

27In fact, one of the consequences of this fact is that the question “how fast were you
moving?” becomes meaningless – only velocity relative to someone else can be measured.
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4.23.5 What this means mathematically

Let’s say you’re at the origin, and you send out a sudden flash of light forwards
along the x-axis. If x is the position of this flash of light at time t, then x =
ct. That’s what it means to say that the speed of light is c! In other words,
x2 − c2t2 = 0.28 We are in frame territory here.

(The speed of light is c) =⇒ (x2 − c2t2 = 0)

But this has a very simple consequence: if anybody else measures the
position x′ and time t′, then they have to measure the same value for the speed
of light. That is, x′2 − c2t′2 = 0, too. This is critical. In fact, I feel another
frame coming on.

Any transformation that keeps x2− c2t2 constant, will keep the speed of
light constant for all reference frames.

Does that look familiar? It’s the same as the “new” rotations29 that we looked
at. The only difference is that instead of x2 − y2, we have x2 − c2t2. Since c
is a constant, ct is just proportional to t. It’s very similar to simply changing
the units, from, say, inches to centimeters. The proportionality constant for that
conversion is 2.54 – most importantly, it’s always 2.54. The conversion would
be tricky if the ratio of inches to centimeters kept changing in different places,
but it’s constant. It’s the same for converting from t to ct.30

28If we had sent it backwards along the negative x-axis, then we would have x = −ct This
way of writing it includes both cases, and is also easier to generalize when we talk about beams
of light along directions other than the x-axis.

29Those quotation marks again.
30The Mars Climate Observer was a spacecraft that crashed into Mars, instead of orbiting

the planet, precisely because someone forgot to convert units from feet-pounds-seconds to
metric. If there had been Martians watching, it would have seemed to them that we were
bombarding their planet with interplanetary cannons. They might have attacked us back with
giant space lasers, so please do be careful with units.
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4.23.6 What Are You Getting At?

I’m saying something very simple. The Special Theory of Relativity is the same
thing as the new rotations we studied, under a different name.
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Transformations that keep
x2 − y2 constant

Relativistic transformations of
space and time

The x-y plane in two dimensions Just one space dimension (x) and
one time dimension (t)

A point in the x-y plane An “event” that takes place at one
point, that lasts for an instant.
Think, for example, of the flash of
a firefly.

A rotation changes the coordinates
of a point, but keeps x2 − y2 con-
stant

A new observer who is moving with
respect to the original observer will
see different values for the loca-
tion (x-coordinate) and the time (t-
coordinate) of an event.

x′ = x coshB + y sinhB

y′ = x sinhB + y coshB

x′ = x coshB + ct sinhB(4.18)

ct′ = x sinhB + ct coshB(4.19)

Two points can start with the same
x coordinates, but different y coor-
dinates. They will have different x
coordinates after a rotation.

Two events can have appear to be
at the same location (that is, have
the same x-coordinate), but at dif-
ferent times, according to one ob-
server. But another observer mov-
ing with respect to the first one
would see them as being in differ-
ent locations.

Two points can start with the same
y coordinates, but will have differ-
ent y coordinates after the transfor-
mation.

Two events can have appear to
be simultaneous (that is, have
the same t-coordinate) according to
one observer. But another observer
moving with respect to the first one
would see them as being at differ-
ent times.

The difference in y coordinates be-
tween two points can change after
a transformation.

Two observers, moving at different
speeds, would get different mea-
surements for the time difference
between two events. For exam-
ple, if a firefly flashes twice, they
would have different measurements
for the time between flashes.
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4.24 How To Find “B”

We claim that these equations describe the real world through Einstein’s Special
Theory of Relativity, but they involve the quantity “B”. That’s a little weird,
because if you you look around you in the real world, you find lengths, veloci-
ties, masses, temperatures, but none of these mysterious Bs31. In the case of
ordinary rotations, “B” was simply the angle of rotation, which is something we
understand. Now it’s our job now to relate this B parameter to something that
we actually observe, too.

It’s actually easy to see. We’re going to go back to the situation we talked
about: an observer (“Abeni”) sitting stationary according to her own coordinate
system, and another observer (“Bakul”) flying past at velocity v. According
to “Bakul”, he’s the one who’s stationary, and Abeni is going backwards with
velocity −v32.

Figure 4.9: If someone is flying by you at a significant fraction of the speed of
light, do not attempt to high-five them! Bad idea, Abeni and Bakul!

The notation for x and t in the different coordinate systems is important
here, and we need to keep track of it.

1. Abeni’s coordinates for her own position and time are xa and ta.

31If you were expecting a joke about Hymenoptera, I’m going to disappoint you here.
32Coordinate systems are just a mathematical expression of narcissism.
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That is, xa is where she thinks she is, and ta is the time on her wristwatch.33

2. Similarly, Bakul’s coordinates for his own position and time are x′
b

and t′b.

3. Abeni’s coordinates for Bakul are xb and tb. That is, when Abeni says
that the time is tb on her watch, then she says that Bakul is at position
xb with respect to her.

4. And Bakul’s coordinates for Abeni’s position and time are x′
a and

t′a. That is, when Bakul says that the time is t′a, then he says that Abeni
is at position x′

a.

In other words, the underscript “a” or “b” tells you whose position and time
are being recorded (Abeni or Bakul), and the normal letters or the presence of
an apostrophe34 tell you who is doing the recording, Abeni or Bakul.

So let’s see how this plays out!

1. xa = 0, for all values of ta. Simple. In her own coordinate system, Abeni
is always motionless, at the origin.

2. x′
b = 0, for all values of t′b. The same for Bakul. In his own coordinate

system, Bakul feels that he is motionless, and at the origin.

3. xb = v · tb. Abeni sees Bakul moving past her with speed v along the x
axis.

4. x′
a = −v · t′a. Bakul sees Abeni moving past him with speed v along the

negative x axis.

None of this is exactly rocket science, although it is quite useful in rocket
science. But it’s useful to take stock of what we’ve achieved. Equations 4.18
and 4.19 tell us how xa and ta are related to x′

a and t′a, since those two pairs of
quantities are ways of measuring the same things in different coordinate systems,
and they do it in terms of the rather mysterious quantity, B.

33Okay, I don’t wear a wristwatch either. It’s what people used to have in the time period
after grandfather clocks, and before mobile phones.

34Please do not write to me and tell me that it’s technically not an apostrophe. But if you
do, please also include your favorite joke.
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And xa = 0 and x′
a = −v · t′a also give you a way of comparing those same

two pairs, but in terms of v, which is something we understand.

So comparing those two relations will tell us how B and v are related. Let
us proceed.

1. Write down equations 4.18 and 4.19, for Abeni’s position and time, as
described by Abeni herself and by Bakul:

x′
a = xa coshB + cta sinhB

ct′a = xa sinhB + cta coshB

2. Substitute xa = 0, because Abeni thinks of herself as stationary:

x′
a = cta sinhB

ct′a = cta coshB

3. Substitute x′
a = −v · t′a, because Bakul sees Abeni moving backwards with

speed v.

vt′a = cta sinhB

ct′a = cta coshB

4. Divide these two equations, and that gives us B in terms of v:
v

c
= tanhB

Technically, this solves the problem we wanted to answer, of what B is – B is
simply arctanh(v/c). If we know v, we could calculate B, and plug that into the
equations 4.18 and 4.19. But there’s a way to simplify it further, based on the
fact that cosh2A− sinh2A = 1 that we noticed earlier. (By the way, cosh2A is
another way of writing (coshA)2 – it might be rather confusing notation.)
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tanhB = −v/c
=⇒ sinhB/ coshB = −v/c
=⇒ sinh2B/ cosh2B = v2/c2

=⇒ (cosh2B − 1)/ cosh2B = v2/c2

=⇒ coshB = 1/
√
1− v2/c2

=⇒ sinhB = (−v/c)/
√

1− v2/c2

(The last line comes from cosh2B − sinh2B = 1.)

Let’s plug these values back into eq 4.18 and eq 4.19! And if anything we’ve
done deserves a frame, these two equations do.

x′ =
x√

1− v2/c2
− vt√

1− v2/c2
(4.20)

ct′ =
−vx/c√
1− v2/c2

+
ct√

1− v2/c2
(4.21)

These are the famous Lorentz transformations that describe Einstein’s Special
Theory of Relativity.

4.25 You’ll never look at the Universe in the
same way again

There are many other ways of deriving these equations, but in my opinion, think-
ing in terms of symmetry gives us the best understanding of what’s going on.

We derived the fact that x2 − c2 · t2 is invariant from the constancy of the
speed of light. But thinking in terms of symmetry allows us to invert this process.
We can start from the fact that x2− c2 · t2 is an invarianet that does not change
no matter how fast an observer is moving, and derive everything else from that.
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By doing so, we realize that there’s nothing central about electromagnetic
radiation! The equations of relativity aren’t really about light (and its
speed). Instead, they are about the invariant properties of space and
time. Which is a much more fundamental, interesting, and fruitful way of think-
ing about them.

4.26 You got this

But don’t forget – if you understand ordinary rotations in two dimensions, then
you understand our weird rotations that keep x2 − y2 constant. And if you
understand those rotations, you understand special relativity. Points moving
that preserve a symmetry – it really is that simple.

4.27 Get Lost!

The Global Positioning System35 (GPS) is a system of 31 satellites that circle
the globe at a height of more than 20,000 km over the earth’s surface. We don’t
have the time36 to describe how the GPS system works in detail, but here’s a
brief overview.

There are always at least four satellites visible in the sky at any position on
the globe, and each satellite broadcasts a signal to the GPS receiver. This signal
tells the receiver the position of the satellite, and also includes a clock signal that
marks the time the signal was transmitted from the satellite.

There are a few different ways that the receiver is able to use this informa-
tion to estimate the position on the planet and successfully guide the user to
the nearest coffee shop. We’re going to discuss the simplest method, rather
than the most commonly used method, and we’ll do some order-of-magnitude
calculations37.

35There are multiple GPS systems in the world, but we’re going to discuss the Navstar GPS,
as that is the one that is by far the most used.

36Or the space, depending on how fast we want to proceed. (That was a joke about space,
time and relativity. I shouldn’t need to point that out, folks.)

37The other methods may make more sense in practice, but they won’t change the conclu-
sions that we arrive at.
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1. The receiver has its own internal clock. All of the satellites have their own
internal clocks, too, and they continually broadcast a radio message that
does nothing but say what time it is on their own clock.38

2. The receiver compares the time on its own clock with the time on the
signal from each of the satellites, and finds the difference in time.

3. This difference in time is just the time taken for the signal to get from the
satellite to the receiver.

4. The distance to each of the satellites is then just c∆t, where c is the
speed of light (approximately 300,000 km/sec), ∆t is the difference in
time between the signal and the receiver’s internal clock.

5. Since we know the position of each satellite.39 and the distance from each
of the satellites, we know the position of the receiver: it’s at the point of
intersection of the spheres with known centers and known radiuses.

6. Since we know our position, we can then figure out where the nearest
coffee shop is, in order to get there before we collapse.

Do you notice a tricky part in this calculation? It’s in the second step. We’re
comparing the clocks in the satellites with the clocks in the receiver. Let’s assume
that the clocks in the receiver and the satellite are calibrated and working correctly
at the start of the day. This means that at the start of the day, t = t′ = 0. Let’s
answer the question: how accurate will the GPS be by the end of the day?

We know that the GPS satellites are at a height of 22,000 km above the
earth’s surface. Satellites at this height travel at a speed of 4000 m/s. We look
at the Lorentz equations and plug in x = 0 (because the receiver always stays at
the center of her own coordinate system), t = 86, 400 (because there are 86,400
seconds in a day), and look at the value of t′. Here’s what we get:

38And it’s still not the most boring radio show out there.
39That was clearly me glossing over an important point; I’m just not going to get into details

of how we know the positions, since it’s not important for this purpose.
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t′ =
t√

1− v2/c2

=
86, 400√

1− (4, 000/300, 000, 000)2

= 86, 399.999993

Does that seem a little underwhelming? Instead of 86,400 seconds, we are
confronted with a value of 86,399.999993 seconds. Stop the presses?

Well, actually, yes. The difference is 0.000007 seconds in terms of time, but
how much of a mistake will that make in terms of position? The answer is,
approximately, c×0.000007, which is 300,000,000 m/sec x 0.000007 sec. Which
is more than 2 km, and if you’re off by that much, you’re going to take a really
long time to get your cup of coffee. Especially if the GPS drives you off a cliff
first. The only way GPS works even remotely well, is by including relativistic
analysis into every single calculation, which is pretty cool when you think about
it.40

Maybe you can use the GPS to guide you to a store to pick up one of those
toddlers’ toys, while you’re at it.

40And every day, the uncertainty gets worse by 2 more kilometers. There’s also an addendum
to this analysis: we’re only considering the Special Theory of Relativity. The General Theory
of Relativity (which deals with the effects of gravitation), actually adds an even larger error
every day.
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Chapter 5

A World of Information

This is going to be a funny chapter.1

The crux of the chapter, the essence of what we will learn, is what we don’t
know. What we can never know. And ice cream.

5.1 Ice cream

Alice, Bob, Carol and Dan want to order ice cream. Of course, as everyone
knows, there are only two flavors of ice cream, chocolate and vanilla.2,3 Also,
as everyone knows, there’s a fifty-fifty chance of any particular person liking
chocolate or vanilla.

What do you think the final ice cream order is likely to be? Let’s make a
table and see, checking all the different choices each person can possibly make.

1Funny as in strange, not funny as in a bunch of rather strained jokes that are clearly a
cry for help.

2If they were the kind of people to order avocado-and-liquorice flavored ice cream, they’d
be in somebody else’s book.

3Okay, I’ll grant you strawberry. Let’s just pretend strawberry doesn’t exist for now, please.

75
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Alice Bob Carol Dan the ice cream order
1 chocolate chocolate chocolate chocolate 0 vanilla, 4 chocolate
2 chocolate chocolate chocolate vanilla 1 vanilla, 3 chocolate
3 chocolate chocolate vanilla chocolate 1 vanilla, 3 chocolate
4 chocolate chocolate vanilla vanilla 2 vanilla, 2 chocolate
5 chocolate vanilla chocolate chocolate 1 vanilla, 3 chocolate
6 chocolate vanilla chocolate vanilla 2 vanilla, 2 chocolate
7 chocolate vanilla vanilla chocolate 2 vanilla, 2 chocolate
8 chocolate vanilla vanilla vanilla 3 vanilla, 1 chocolate
9 vanilla chocolate chocolate chocolate 1 vanilla, 3 chocolate
10 vanilla chocolate chocolate vanilla 2 vanilla, 2 chocolate
11 vanilla chocolate vanilla chocolate 2 vanilla, 2 chocolate
12 vanilla chocolate vanilla vanilla 3 vanilla, 1 chocolate
13 vanilla vanilla chocolate chocolate 2 vanilla, 2 chocolate
14 vanilla vanilla chocolate vanilla 3 vanilla, 1 chocolate
15 vanilla vanilla vanilla chocolate 3 vanilla, 1 chocolate
16 vanilla vanilla vanilla vanilla 4 vanilla, 0 chocolate

Table 5.1: The different ways ice cream can be ordered

All of these possibilities sort of make you appreciate the splendor and diversity
of humanity, don’t they? It’s important to realize that since each person is equally
likely to order chocolate and vanilla, each row of this table is equally likely to
happen.

But the ice cream counter person doesn’t need to know who wants which
type of ice cream, of course. They only need to know how many of each type of
ice cream are needed, in total. That information is found in the last column of
the table.
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the order how many times it
occurs in the previ-
ous table

0 vanilla, 4 chocolate 1 time
1 vanilla, 3 chocolate 4 times
2 vanilla, 2 chocolate 6 times
3 vanilla, 1 chocolate 4 times
4 vanilla, 0 chocolate 1 time

Table 5.2: How many times each order occurs

That was a lot of work to get to something really obvious: the most likely
ice cream order for four people is evenly divided, 2 chocolate and 2 vanilla ice
creams. Are we seriously going anywhere with this? Stay tuned!4

5.2 Even more discussion about the ordering of
ice cream

We’re going to re-state that result again, using different language. Let’s call each
of the different rows in table 5.1 a “micro-state”, while the total order we’ll call
a “macro-state”. For example, as an example of a micro-state, we have “Alice
orders chocolate; Bob orders vanilla; Carol orders vanilla; Dan orders vanilla”.

The person taking the order at the counter doesn’t need all this information,
of course: all she hears is “Three vanilla, one chocolate”. That’s an example of
what we’re calling a macro-state.

So the statement, “Two chocolate and two vanilla occurs the most times in
table 5.1” can be re-phrased: “The macro-state that corresponds to the most
micro-states is two chocolate, two vanilla”.

And if each possibility is equally likely – if each person has an equal probability
of ordering chocolate or vanilla – then the most likely macro-state is the one that
has the most micro-states within it.

4Yes. Yes, we are.
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5.3 Information and Entropy. Also, Ice Cream.

Let’s talk about information now. Here’s a rough, non-technical working defini-
tion of “information”: something we didn’t know before. Or, in other words, a
surprise. Of course, there are many other ways of defining information, but let’s
use this particular one for this chapter.

If someone comes up to me and tells me that there’s a piece of spinach stuck
in my teeth, that’s information, because I didn’t already know they were going
to tell me this.

On the other hand, if the neighbour comes up and tells you that the local
sports team (the Fighting Earwigs) are going to do well next year, that’s not a
surprise, because that’s what that neighbour says every single year, again and
again and again and again. Since we already know that he’s going to say that,
there’s zero information content. The Earwigs could be good, they could be bad
– since our neighbour always says that they’re going to do well, this conversation
does not actually give us any information about how good they are.

Some more examples:

� When we study information, one of the most common models is a stream
of zeros and ones. For example, in an earlier chapter, we talked about
the Voyager spacecraft sending us data back from the outer reaches of the
Solar System5. Each individual bit that we get, zero or one, is information.

� If we know the macro-state of some system (such as ordering ice-cream),
then we have a range of possible micro-states. To know which particular
micro-state we actually have from those possibilities, is a piece of informa-
tion.
And if we know only the macro-state and not which micro-state is chosen
(like knowing the ice cream order, but not knowing which person gets
which flavor), that is a lack of information that we can still talk about.

When we quantify our lack of information, such as by knowing the macro-
state but not the exact micro-state, then the amount of information that’s
hidden in the macro-state is called the entropy of that state. We will

5For the moment, let’s ignore the noise that corrupts the data, and imagine that the ones
and zeros are received just as they’re sent.
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be using that term later. It’s still information, but it’s a way of describing how
much information we’re missing rather than how much information we have.

Please be aware: entropy is a concept that is used widely in many different
contexts, and a lot of people spend a lot of time arguing about the exact defini-
tion. It seems to make them happy for some reason, like ice cream or a hot-air
balloon ride. That’s a game we’re not going to play: we’ll use the definition we
just saw.

5.4 How Do We Know How Much We Know?

If we want to really study the theory of information, then our first requirement
will be to quantify information. Only once we’ve done this, can we dive in further.

What should we use to measure information? The answer might seem a little
circular: by using other information. But if you think about it, that’s how we
measure most things. Length is measured in terms of a standard length (one
centimeter, for example); weight in terms of a standard weight (such as one
kilogram). So information can be measured in units of a standard amount of
information.

Here’s one unit that we can use, the simplest one: the amount of information,
or surprise, in randomly choosing a zero or a one. This is called one “bit” of
information.

We see single bits of information all over the place. If we toss a coin, it’s either
heads or tails; and these outcomes can (quite obviously) be put in a one-to-one
correspondence with a zero and a one. So the random toss of a coin choosing
heads or tails, has the same amount of information as randomly choosing a zero
or a one: one bit.

Some more examples of single bits of information:

� In Morse code, every character is a dash or a dot

� Every location in a computer memory is a zero or a one

� A light switch can be on or off

� When we get a signal from Voyager 1, each character is a zero or a one.

� An ice cream order can be chocolate or vanilla
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It’s been really easy so far. It will get more challenging soon.6,7

5.5 Starting to get more challenging interesting

So one bit of information allows us to distinguish between two equally likely
states. What about two bits?

Obviously, two bits allow you four combinations: 00, 01, 10, 11. Three
bits allow you eight, four bits allow you sixteen. And it doesn’t take much to
generalize that: n bits of information allow us to specify between 2n micro-states.

Now that we’ve established that, going the other direction is pretty clear. 2n

micro-states contain n bits of information. More generally, if we have k possible
micro-states, then knowing which one of them is chosen gives us log2 k bits of
information. In the same way, if we have a signal coming in that can be in one
of k different states, it provides log2 k bits of information.

Here’s where it starts getting powerful: we can use this formula even when
k is not a power of 2. For example, when we roll a die, there are 6 equally likely
possibilities. Using this formula tells us that this is log2 6 bits of information, or
approximately 2.58 bits. So one roll of a die is the equivalent of 2.58 coin tosses.

And of course, this works for entropy, too. If the order (aka the macro-
state) is “one chocolate, three vanilla”, then table 5.4 tells us that there are four
micro-states that are possible. So the entropy of this macro-state is log2 4, or 2
bits.

And if the order is 2 chocolate, 2 vanilla: we already saw that there are 6
micro-states that correspond to that order. So the entropy of the “two chocolate,
two vanilla” ice cream order is 2.58 bits.

The fact that the most likely order is “two chocolate, two vanilla”, then, can
be re-phrased: that order has the highest entropy of all orders. These are two
different ways of saying the same thing.

I don’t know if any of these steps seemed particularly hard, but this equation
is a Really Big Deal. We celebrate that in the traditional way, by putting it inside
a nice little frame:

6For the record, that’s meant as a promise, not a threat.
7I meant interesting ! I meant to say that it will get more interesting soon.
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S = logΩ
where:
S is the entropy,
Ω is the number of micro-states.

Did I mention this equation is a Really Big Deal? Ludwig Boltzmann, one of
the great physicists of the Nineteenth century, was so proud of it that he had it
carved on his gravestone.8

8In his version of the equation, k is called Boltzmann’s constant. It’s a constant, so
multiplying by it is simply a change of units, like measuring in meters instead of centimeters, or
furlongs instead of nautical miles. Don’t worry about it, it doesn’t change anything important.
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5.6 The Strawberry Strikes Back!

For this formula S = log Ω to be true, there’s an implicit assumption, that all
possibilities are equally likely. For example, when we calculated that the entropy
of one roll of a die was 2.58 bits, we assumed that it was a fair die, that all
options from 1 through 6 were equally likely. For that matter, even a toss of the
coin doesn’t deliver one bit of information if heads and tails aren’t equally likely.

The case where all possibilities are equally likely is technically called a uniform
distribution. But non-uniform distributions are found all over the place.9

As an example of an “unfair”, non-uniform distribution, consider asking peo-
ple that you meet on the street how many years old they are.10 The answers you
get are numbers between 0 and 120, but they’re certainly not equally likely for
all numbers between 0 and 120! You’re far more likely to meet someone who’s
20 than someone who’s 120.

When that is the case, the entropy can’t just be the log of the number of
micro-states, because each micro-state is no longer equally likely. So the number
of micro-states is no longer an indicator of how likely a given macro-state is.

5.7 Uneven probabilities

In this section, we are going to find the information content in a distribution that
doesn’t have equal probabilities. Also, we will order more ice cream.

Alice, Bob, Carol and Dave have a friend named Elizabeth who likes ice cream
too. But in addition to chocolate and vanilla, she also likes strawberry ice cream.
She can’t decide which one she likes best, in fact, so when asked what she wants,
she chooses randomly from all three, with equal probability (so a probability of
1/3 for each of them). Here’s a question: how much information content is
packed into her choice?

This is a question we know how to answer: it’s log2 3 bits, or approximately
1.58 bits. We are now going to extract those same 1.58 bits in another way, in
two steps instead of one.

9Because the world isn’t fair.
10Do not actually do this.
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� For the first step, her friend Alice asks her, “Hey, Elizabeth, we’re ordering
ice cream. Is the flavor you want either chocolate or vanilla?” Elizabeth
decides on a flavor, randomly, between chocolate, vanilla, and strawberry.
If the flavor is chocolate or vanilla (which is 2/3 of the time), she answers
“yes”; if it’s strawberry (1/3 the time), she answers “no”.

We don’t know the information content of this step. It’s a yes-or-no ques-
tion, but not a 50-50 one, a 2/3 to 1/3 probability question.

� For the second step, if Elizabeth answered “yes” to the first question, then
Alice asks her a second question: “Okay, then, which one, chocolate or
vanilla?”. This question distinguishes between two equally likely alterna-
tives, so it provides one bit of information, as we’ve seen before. But it only
gets asked 2/3 of time; the other 1/3 of the time, zero bits of information
are provided. So on the average, the amount of information transferred in
this second step is (2/3)× 1 = 2/3 bits of information.

What we want to find is the amount of information transferred in the first step.
So we simply state the obvious: the information transferred by answering “choco-
late, vanilla or strawberry?” directly (log2 3 bits) has to be equal to the infor-
mation transferred in the two step process – because it’s the same information,
after all.

If the information stored in “Is it either chocolate or vanilla?” is S, then:

S + 2/3 = log2 3
=⇒ S + 2/3 log2 2 = (2/3) log2 3 + (1/3) log2 3 logx x = 1 for any x
=⇒ S = (2/3)(log2 3− log2 2) + (1/3) log2 3 subtracting 2/3 log2 2 from both sides
=⇒ S = (2/3) log2(3/2) + (1/3) log2 3 log b− log a = log b/a
=⇒ S = −(2/3) log2(2/3)− (1/3) log2(1/3) log a = − log 1/a

This can be generalized very easily, to more than just a simple case of two
choices with 2/3 and 1/3 probability. I’m not going to go through all the steps,
but all the key ideas are already present in the discussion we just went through.

If the signal consists of one of n different symbols (n = 3 for chocolate,
vanilla, strawberry; n = 2 for zero or one; n = 6 for rolling a die; n = 120 or so
if you ask people their age), and the probability of these symbols are p1, p2, . . . pn,
then the information content (or, alternatively, the entropy) of the system is
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S = −p1 log p1 − p2 log p2 − . . .− pn log pn

This formula is huge. It has applications all through physics, digital signal
processing, and information theory. We’re going to look at some of these appli-
cations now, but before we do that, let’s try to understand it a bit better. We’ll
make things easier on ourselves by looking at the case of n = 2. n = 2 means
that every symbol transmitted is either 0 or 1 and nothing else, so p1 + p2 = 1.
We’ll call the probability of the symbol being 0 p; then the probability that the
symbol is 1 is 1− p.

Then, S = −p log p− (1− p) log(1− p).

Let’s look at some special cases.

� In particular, S = 0 if p = 0 or p = 1. If you think about it, this makes
sense. p = 0 means that every single symbol received has to be a 1; p = 1
implies that every single symbol received has to be a 0. Since you can
predict exactly what the next symbol is, there is no information transfer
happening, so S = 0.

� If it’s an equally likely distribution with n choices, then p1 = p2 = p3 . . . =
pn = 1/n.

Then S = −n× 1/n log(1/n) = log n (since log(1/n) = − log n).

So we get back our formula that we already saw earlier. Not a surprise,
but it’s nice to know that our work is consistent.

5.8 Entropy in other situations

As usual, I’m going to present some problems that appear to have nothing to do
with real life, just so I can later pull out a whole bunch of real-world applications,
and make a big deal about it. We’re going to start off with a simple question,
then work step by step.
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5.8.1

The first question is something we’ve already solved before:

If we have 6 numbers, each of which is 1, 2 or 3, what’s the most likely
distribution of 1s, 2s and 3s?

We looked at this when studying ice cream order distributions. The most
likely distribution is two 1s, two 2s, and two 3s, the even distribution. Just as
the most likely ice cream order for four people was two chocolate, two vanilla.

5.8.2

That was a little bit too easy, so here’s the next level of complexity.

Just as before, let’s say we have 6 numbers, each of which was either 1, 2,
or 3. But now we also require that the sum of the 6 numbers must equal 8. So
what’s the most likely distribution of 1s, 2s and 3s?

It’s always easier if we can look at all the alternatives. So here’s a table. It’s
a list of all the different ways that six numbers, all of which are between 1 and
3, can add up to 8. Keep an eye on the last three columns, which tell you how
many 1s, 2s and 3s are in each sum.
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sum number of 1s number of 2s number of 3s
1 1 + 1 + 1 + 1 + 1 + 3 = 8 5 0 1
2 1 + 1 + 1 + 1 + 2 + 2 = 8 4 2 0
3 1 + 1 + 1 + 1 + 3 + 1 = 8 5 0 1
4 1 + 1 + 1 + 2 + 1 + 2 = 8 4 2 0
5 1 + 1 + 1 + 2 + 2 + 1 = 8 4 2 0
6 1 + 1 + 1 + 3 + 1 + 1 = 8 5 0 1
7 1 + 1 + 2 + 1 + 1 + 2 = 8 4 2 0
8 1 + 1 + 2 + 1 + 2 + 1 = 8 4 2 0
9 1 + 1 + 2 + 2 + 1 + 1 = 8 4 2 0
10 1 + 1 + 3 + 1 + 1 + 1 = 8 5 0 1
11 1 + 2 + 1 + 1 + 1 + 2 = 8 4 2 0
12 1 + 2 + 1 + 1 + 2 + 1 = 8 4 2 0
13 1 + 2 + 1 + 2 + 1 + 1 = 8 4 2 0
14 1 + 2 + 2 + 1 + 1 + 1 = 8 4 2 0
15 1 + 3 + 1 + 1 + 1 + 1 = 8 5 0 1
16 2 + 1 + 1 + 1 + 1 + 2 = 8 4 2 0
17 2 + 1 + 1 + 1 + 2 + 1 = 8 4 2 0
18 2 + 1 + 1 + 2 + 1 + 1 = 8 4 2 0
19 2 + 1 + 2 + 1 + 1 + 1 = 8 4 2 0
20 2 + 2 + 1 + 1 + 1 + 1 = 8 4 2 0
21 3 + 1 + 1 + 1 + 1 + 1 = 8 5 0 1

Table 5.3: Six numbers (between 1 and 3) that add up to 8

number of 1s number of 2s number of 3s how many times
5 0 1 6
4 2 0 15

Table 5.4: How many times each combination of 1s, 2s and 3s occurs

That last table tells you the important thing: the most likely distribution is
four 1s and two 2s (some arrangement of 1 + 1 + 1 + 1 + 2 + 2 = 8). Instead
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of the most common distribution being an even arrangement of 1s, 2s, and 3s,
the most common distribution has more smaller numbers than larger ones.

Of course, if we fix the sum of the six numbers to be 8, then that’s the same
thing as saying as we’re fixing the average of the six numbers to be 8/6, or 1.33.
And when we do this, in the most likely arrangement, 66.6% of the numbers (4
out of 6) are 1s, 33.3% (2 out of 6) are 2s, and 0% are 3s.

5.9 Entropy and atoms

That was pretty easy, and not particularly painful. So ask yourself this: are we
the type of people to be satisfied to leave it at that?11

So let’s talk about gas.

To be specific, let’s talk about the Helium atoms inside a Helium balloon.
There are many, many atoms inside the balloon,12 and each atom is moving
around with a certain value for its speed, and hence its energy. We cannot know
where each individual atom of helium is, how fast it’s moving, and whether it
prefers chocolate or vanilla ice cream. All of these are random and impossible to
measure in any practical sense.

What we can actually measure are quantities such as the total mass and the
temperature. So specifying a given mass of helium, and the temperature it’s at,
will be our macro-state.13 This is like the ice cream counter worker, who just
knows how many chocolate and how many vanilla ice creams are ordered, but
does not know which individual gets which flavor.

Knowing the mass and the temperature actually gives us some insight:

� The total mass is the number of particles, times the mass of each particle.
So from the mass, we can find the number of particles.

� The temperature is proportional to the average kinetic energy of each
particle, so we know the average kinetic energy.

11No?
12Seriously. Like a bajillion.
13This is the actual original usage of macro and micro states. These concepts weren’t really

developed to describe the ordering of ice cream, you know.
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� From the number of particles, and the average kinetic energy of each
particle, we can find the total kinetic energy of all the particles put together.

Here is our goal for this section: given a macro-state (for example, a
known mass of helium in the balloon, at a known temperature), what is the
most likely distribution of kinetic energies for the particles?14

If you think about it, we’ve been building up to this for a while now. All
the other problems have been pretty similar to this one – that is, we’ve tried
to answer the question “What’s the most likely distribution?” for a bunch of
different scenarios.

� We looked at ordering ice cream. We discovered that in this case, the
most likely distribution is the “flat” one. That is, chocolate and vanilla
are equally likely; if there were more flavors, it would be equally distributed
among all of those, too.

� We looked at the scenario in which we chose exactly 6 numbers (out of
1, 2 and 3), such that their sum was fixed to be 8. For this scenario,
again, we found the most likely distribution, by counting the micro-states
for each distribution. We discovered that the most likely distribution was
a little less evenly distributed. In particular, in the most likely distribution,
smaller numbers were more common than larger ones. In this case, the
most likely distribution had the number “1” occurring 4 times, the number
“2” occurring 2 times, and the number “3” occurring zero times.

It turns out that the second scenario is almost exactly the same as the current
one! In the helium atom case, too, the total number of constituents is fixed (it
was 6 in the second scenario). And their sum is fixed – because the total energy
tells you the temperature.

However, there are a few differences between the problem we already solved,
and the current one.

1. Instead of six numbers adding up to 8, there are about 1.5×1023 (per gram
of Helium) different values for kinetic energy that add up to a fixed amount

14If we know the kinetic energies, we also know the speeds, so that is another equivalent
way to look at the problem.
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– which, for all practical purposes, is pretty much an infinite number of
values.

2. The possible values themselves were limited to the discrete numbers 1,2
and 3 in the example we looked at, but can be a continuous range of values
for the kinetic energy of the atoms.

Neither of these is a major stumbling block, but they make it impossible to
simply enumerate all the possible micro-states, see which macro-state each one
belongs to, and thereby see which macro-state has the most micro-states. So
instead we’re going to have to think about it in order to solve it.15

We’re going to make one simplification: instead of letting the energies take
a continuous range of possible values, we will assume they take a discrete (but
infinite) set of possible values: E0 < E1 < E2 < E3 < .... This allows us to
focus on the reasoning instead of getting caught up in technical issues that are
not relevant. The number of particles is going to be fixed, but we will assume
that it is a very large number.16

I’m going to say this ahead of time: the problem we are about to solve is a
pretty challenging one, and it’s very impressive that we can actually solve it with
the machinery that we’ve just built, after simply fiddling around with ice cream
orders for a few pages!

For a fixed number of particles, and a fixed total energy, how many
particles are expected to be in each energy level E0, E1, ...?

1. We’ll start off with the really cool equation that we recently discov-
ered: S = −p0 log p0 − p1 log p1 − p2 log p2 − . . .− pk log pk − . . .

� As a reminder, p0 is the fraction of the total number of particles that
are in energy level E0, and similarly for p1, p2, ....

� Also as a reminder, the entropy (“S” on the left hand side of the
equation) is a measure of the number of micro-states available in this
distribution of particles among energy states.

15Which is a good thing, in case you were wondering.
16This is an example of a “micro-canonical ensemble”. Don’t worry too much about what

that means. The other kinds of ensembles are the “canonical ensemble” and the “grand
canonical ensemble”. Who can deny that “Grand Canonical Ensemble” would be a
fantastic name for a band?
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� Obviously, this means that the most likely state is the one that has a
higher entropy than any other state.

2. The two constraints are that the total number of particles is fixed to be
N , and the total energy of all the particles is fixed to be E.

� Total number of particles: Let the number of particles in energy
level E0 be n0, and similarly for n1, n2, ....

n0 + n1 + n2 + ... = N

We are going to assume N is a very large number, much greater than
1. Another way to write that is N >> 1. In fact, we assume that the
number of particles in each level is much greater than 1: nk >> 1
for each k.

Also, p0, is the ratio of the number of particles in energy level E0 to
the total number of particles (N):

pk =
nk

N

These two equations give us a simple relationship that is no surprise:

p0 + p1 + p2 + ... = 1

� Total Energy: A particle in energy level Ek has energy Ek.
17 If there

are nk particles in that energy level, they will together have energy
nk ·Ek. So the total energy (which we know is fixed to be E) is given
by:

E = n0 · E0 + n1 · E1 + . . .+ nk · Ek + . . .

3. The kth term in the formula for entropy is −pk log pk. How does this
change if we change the number of particles in the energy level by
a small amount?.

� Here is a fairly elementary result from calculus, which can be shown
in other ways, too. We’re not going to prove it, we’ll just take it as
given. The formula is this:

If x is a fraction very close to zero (x << 1), then

log(1 + x) ≈ x
17Insert sarcasm emoji.
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� We know that pk =
nk

N
, so

−pk log pk = −
nk

N
log

nk

N
.

� We want to see what happens to −pk log pk when nk changes by a
small amount.

Say the change in nk is dk; that is, the new number of particles in
the energy level is n′

k = nk+dk. Remember that the change is small,
so dk is much less than nk (dk << nk).

The fraction of particles in energy level k is now changed from pk =
nk

N
to

p′k =
n′
k

N
=

nk + dk
N

� The change in the quantity −pk log pk is the new value minus the old
value. I want to emphasize that this calculation, as ugly as it looks,
is just a little rearrangement of terms – you should feel free to skip
to the end, since it’s details rather than concepts.18

(−p′k log p′k)− (−pk log pk) Explanation:

= (−n′
k

N
log

n′
k

N
)− (−nk

N
log

nk

N
) pk =

nk

N

= (−nk + dk
N

log
nk + dk

N
)− (−nk

N
log

nk

N
) n′

k = nk + dk

= (−nk + dk
N

log[(
nk

N
)(1 +

dk
nk

)])− (−nk

N
log

nk

N
) nk + dk = nk(1 + dk/nk)

= (−nk + dk
N

[log(
nk

N
) + log(1 +

dk
nk

)])− (−nk

N
log

nk

N
) log(ab) = log a+ log b

≈ (−nk + dk
N

[log(
nk

N
) +

dk
nk

])− (−nk

N
log

nk

N
) log(1 + x) ≈ x if x << 1

= −dk
N

[log
nk

N
+ 1− dk

nk

] multiply the terms in the brackets

≈ −dk
N

(log
nk

N
+ 1) dk << nk

= −dk
N

(log pk + 1) pk = nk/N

That was easier than it looks!19 There were plenty of steps, but each
step is quite simple. Look at what changed from each line to the

18Minor technicality: we assume that the total count N doesn’t change, even though we’re
changing nk. This will be explained later, please don’t worry about it now.

19This is your cue to chime in and agree with me.
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next, and use the hints if you need to.

The important part is that last line. And the most important part
of the last line is that the change in the term is directly proportional
to dk (as long as dk is small, of course). So if you add dk particles

to the kth energy level, the entropy will go up by −dk
N

(log pk + 1);

and if you subtract dk particles, then the entropy will go down by the
same amount. If you double the change in the number of particles,
you double the change in the entropy – as long as the approximation
is still correct, that the change is small compared to the number of
particles present.

4. What does it mean for the entropy to be a maximum? Assume that
the configuration is such that the entropy is at a maximum. Now, shuffle
a small number of particles around in such a way that after the shuffling,
the constraints (total number of particles, and total energy of the system)
are still satisfied. Here’s my question: what happens to the entropy?

It’s easy to say that the entropy has to go down; after all, we started with
the entropy at the maximum! But if that were true, then we could reverse
the process of shuffling – instead of, say, adding 2 particles to energy level
Ek, we could subtract 2 particles from that energy level instead; and the
same for every other energy level too.

We already saw that the change in entropy is linear. So if it went down in
one set of transformations of all the pk, then it would have to go up if we
reversed the transformations – which contradicts our assumption that we
started off at a maximum.

The only way out of this is that for small changes in each pk that satisfy
the constraints, the entropy doesn’t change.

This is a big deal!

As a reminder, this is true only for small changes, for which the change in
entropy is linearly proportional to the change in the number of particles.

5. The payoff.

� Choose three energy levels. For simplicity, we will choose one of them
to be the first energy level E0; the other two are arbitrary and will be
written as Ei and Ej, where i and j are any two integers.



5.9. ENTROPY AND ATOMS 93

� Also for simplicity, we can choose to say that the energy of E0 is
zero. This doesn’t affect any calculations, since only differences in
energy between any two levels are relevant. If we didn’t make this
assumption, it would not make any changes in our result, but it would
make the calculations a little bit more complicated.

� Now shuffle a small number of particles around between those levels,
in a very specific way, so that our constraints on total number of
particles and total energy are satisfied both before and after shuffling.

The shuffling that we do is to add d0 particles to energy level E0,
di particles to energy level Ei, and dj particles to energy level Ej.
Obviously, not all of d0, di, and dj can be positive, but that’s not a
problem. All the other energy levels are unchanged.20

� Then the increase in the total number of particles has to be zero, so

d0 + di + dj = 0

And the increase in the total energy has to be zero, so

(d0 · 0) + (di · Ei) + (dj · Ej) = 0

We will assume that d0 is a known quantity. So solving these two
equations for di and dj in terms of d0 gives:

di = d0 ·
−Ej

Ej − Ei

, and

dj = d0 ·
Ei

Ej − Ei

� If the entropy is already at a maximum for all configurations satisfy-
ing the constraints, we just talked about how making small changes
that satisfy the constraints cannot change the entropy. We also just
showed that if the number of particles in the kth energy level changes

by dk, then the change in entropy has to be −dk
N

(log pk + 1).

So in our case, the total change in entropy, which is the sum of the
changes in entropy from each level, has to be zero.

−d0
N
(log p0 + 1)− di

N
(log pi + 1)− dj

N
(log pj + 1) = 0

=⇒ −d0
N
(log p0 + 1)−

d0 ·
−Ej

Ej − Ei

N
(log pi + 1)−

d0 ·
Ei

Ej − Ei

N
(log pj + 1) = 0

20This is the justification I promised earlier for changing the number of particles in the k-th
energy level, but not changing the total number of particles, N .
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Some very simple rearrangement of terms gives us:

=⇒ log p0 +
−Ej

Ej − Ei

· log pi +
Ei

Ej − Ei

· log pj = 0

=⇒ (Ej − Ei) · log p0 + (−Ej) · log pi + Ei · log pj = 0 Multiply all terms by (Ej − Ei)
=⇒ Ej · (log p0 − log pi)− Ei · (log p0 − log pj) = 0 Rearrangement

=⇒ 1

Ei

· log pi
p0

=
1

Ej

· log pj
p0

log a− log b = log(a/b)

Wait. That last line!21 Do you notice something funny about it?22

The left hand side of the equation depends on the index i, and not j;
the right hand side of the equation depends on the index j, and not
i. And i and j, if you remember, are any energy levels, not especially
chosen ones.

That means that the quantity
1

Ek

· log pk
p0

is the same value for any

value of k. In other words, it doesn’t depend on k at all – it’s a
constant.

Let’s call the value of the constant −C. The minus sign is a little
uncalled for now, but will make more sense in a few minutes.

1

Ek

· log pk
p0

= −C
=⇒ pk = p0 exp (−C · Ek)

Sorry, excuse me, this is what I meant to say:

pk = p0 exp (−C · Ek)
Because it’s just that big of a deal. This is the famous Boltzmann distribution,

and we find it turning up all over the place. We’ll discuss it a bit further in a
minute.

That was a rather long derivation, but the reason that it was so long was
that we explained every small step in detail. I want to run through the same
derivation again, but without all the details, so you don’t get lost in the details.

21If I feel that a sentence deserves an exclamation mark, I will darn well go ahead and add
an exclamation mark.

22“Do you notice something funny about it?” is a recurring theme in this book, I’m beginning
to realize.
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The goal is this: What distribution of particles, with a fixed total number
and a fixed total energy, is most likely?

Here’s the recap of what we just did:

1. The most likely distribution is the one that has the highest entropy.

2. Find a way to shuffle a small fraction of the particles among three energy
levels to keep the total number of particles and the total energy unchanged.

3. If the entropy is at the maximum, then this shuffling should also not change
the entropy. Solve the equation that says “the entropy before this shuf-
fling is the same as the entropy after the shuffling”. That gives you the
Boltzmann distribution.

A few comments about the parameter C: We chose a minus sign in front of
it, so that the number of particles in each energy level would decrease, rather
than increase. If it had a positive sign, there would need to be either be an
infinite number of particles, or a finite number of energy levels.

Also, C can be written as 1/kT , where T is the temperature, and k is
Boltzmann’s constant. We can calculate this by finding the average energy of
each particle, and relating it to the temperature. It’s pretty easy but it’s more
trouble than is necessary for an introduction.

5.10 The Boltzmann Equation

5.10.1 Uses of the Boltzmann Equation

This set of equations is called the Boltzmann distribution, and has consequences
everywhere.

� The most obvious is what we’ve already talked about: tell us how many
atoms in a gas have a kinetic energy within a given range, at a given
temperature. (With a little extra work, this also tells us how many have a
given range of speed.)
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� This can further help determine most of the thermodynamic properties of
a substance, such as specific heat (how much heat is required to increase
the temperature by a certain amount).

� In the same way, the Boltzmann distribution can also tell us as a first
approximation how the atmosphere thins out as we climb above the surface
– why the air is so thin over Kilimanjaro, for example. In this case, the
energy is proportional to the height h, by the formula E = mgh.

� Chemical reaction rates are determined in part by how often two molecules
collide with enough energy to react, which is determined by the Boltzmann
distribution. This works also for calculating nuclear fusion rates, in stars
and in trying to create controlled fusion for energy generation.

� The Boltzmann distribution is also used in machine learning.
Let’s say you have a neural net that takes as input, say, photographs of cats.
We’ve somehow trained the neural net to try to distinguish between cute
cats and cats that aren’t cute. When we feed in a cat photo, however,
it gives us as output two numbers: say “5” for cuteness, “2” for non-
cuteness. How do we go from these rather cryptic numbers to a rating
of whether this cat photo is likely to go viral or not? The answer that
many people use, called the softmax method, is an attempt to find the
most likely set of probabilities that is associated with these two numbers;
and another word for most likely is highest entropy. So we can apply a
measure of

e5

e5 + e2

as a cuteness probability and

e2

e5 + e2

as the non-cuteness probability. This gives us something easy to under-
stand: cuteness probability now goes from 0 to 1, with 1 being a guaranteed
meme monster.23

23For three days, after which you have to find something else to stare at.
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5.11 Tweedledum and Tweedledee

You know what, getting to the Boltzmann equation is pretty impressive. That’s
not a bad location to end up at, maybe put up your feet. And yet . . . there’s a
lot more to play with.

What if there was a system exactly like the gas with the Maxwell-Boltzmann
distribution, except for a difference in how we calculated the entropy? How would
the behavior change? That would be a great showcase for how something simple
like counting states changes the entire behavior of an actual physical system.

5.11.1 I’m glad you asked.

In the early 1920s, a young Indian physics lecturer in Dhaka (now in Bangladesh),
made an embarrassing mistake.24 He was trying to explain to his classroom of
students why physics was unable to correctly predict, say, the glow emitted by a
red hot piece of charcoal. Unfortunately, he made a simple mistake, right there
in front of all his students . . . and he ended up with the right answer, the one no
one else had been able to obtain, instead of the wrong one.25

He was smart enough to realize that he was actually on to something. Here’s
the mistake he made: he assumed that photons, the particles that make up light,
were indistinguishable. Not just hard to distinguish from each other, not just
similar to each other. Two electrons, for example, always have the same mass,
the same charge, and the same spin. There no way, even in principle, to take a
permanent marker and put a red smudge on an electron.

So let’s say you swapped a photon on Mars with one on Earth. According
to this way of thinking, you haven’t changed the universe in any way. The two
states are actually just one state.

This scientist’s name was Satyendranath Bose. His “mistake” is now called
Bose-Einstein statistics, and the particles he described are known as bosons.26 ,

24I haven’t been able to track down a primary source for this story, but the story itself seems
to be well known. Please see, for instance, https://www.isical.ac.in/ econophys/bose.html .

25Awkward.
26There is another type of particle: the fermion (electrons, for example, are fermions).

Fermions, like bosons, are indistinguishable particles. But they are different from bosons in
one very important way: no two fermions are allowed to be in exactly the same state.
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27

5.11.2 A very small difference

Bosons are very similar to distinguishable particles, in terms of interactions. The
only difference is that because they’re indistinguishable, the number of different
ways they can be split up changes. In other words, their entropy.

This small difference leads to very strange behavior, as we’ll examine.

5.11.3 Flipping coins

Let’s say you flip two distinguishable coins. Each coin, of course, can be heads
(H) or tails (T). There are four possibilities, or micro-states, which we can de-
scribe as HH, HT, TH, TT. Each of these possibilities has a probability of 1/4th
of happening.

But if the coins are indistinguishable, there are only three possibilities: HH,
HT, TT – because HT and TH are now the same. And each of these has
probability of 1/3 happening.

This gets more extreme when there are more coins. If there are, say, 10
indistinguishable coins, then there are only 11 very simple possibilities, each of
which has probability 1/11:

� HHHHHHHHHH

� HHHHHHHHHT

� HHHHHHHHTT

� HHHHHHHTTT

� HHHHHHTTTT

� HHHHHTTTTT

� HHHHTTTTTT

� HHHTTTTTTT

27It’s also useful to realize that every journal he tried to submit his work to rejected the paper,
one after the other. Bose then wrote to Einstein and asked for help getting the paper published,
and what do you know, it turns out that having a famous physicist give a recommendation
improved the paper immensely.
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� HHTTTTTTTT

� HTTTTTTTTT

� TTTTTTTTTT

So all ten heads is just as likely as five heads, five tails. However, if these
were normal, distinguishable coins instead, then having five heads and five tails
would be 252 times more likely than ten heads.

To put it another way, for indistinguishable particles, the “all heads” state
has the exact same entropy as the evenly distributed state. The phenomenon we
saw earlier, where ordering equal numbers of chocolate and vanilla ice creams
was the most likely case because that had the highest entropy, is no longer true.
Bosons are much more likely to hang out together in the same state compared
to distinguishable particles.

And if we are dealing with approximately 1026 particles or so, instead of just
ten, the difference in behavior is even more extreme.

This gets . . . weird.

5.11.4 A cold, cold rain

As we just said28 the new Bose-Einstein statistics can lead to some very weird
behaviors. We’re going to look into them in this section.29 The particular phe-
nomenon we’ll look at is called Bose-Einstein condensation, and it is responsible
for the bizarre behaviors of many superconductors, and also for the even more
bizarre behavior of liquid Helium.

Obviously, we can’t go into a full explanation of this phenomenon, because
it’s too complicated and challenging.30 Instead, we’re going to play with a toy
model that exhibits very similar behavior – a simplified version of the actual
system. The objective is to get an understanding of the phenomenon, not be
able to grasp all of the details.31

28Literally, the previous sentence.
29The method we use is taken from the Wikipedia article on the Bose-Einstein condensate.
30Not going to lie: I’d be thrilled if this insult enrages you to look up other explanations

and dive right into them.
31I count approximately 18 physicists who have received Nobel Prizes relating to work in

superconductivity, superfluidity, and Bose-Einstein condensation of atoms. So I think it’s okay
to leave a little bit out of this account of the phenomenon and not quite explain all of it.



100 CHAPTER 5. A WORLD OF INFORMATION

Imagine a system of N particles, which can be in either of two energy levels,
E0 or E1. The energy in E0 is 0, the energy in E1 is ∆. The temperature of the
system is T .

Our task now is to calculate what fraction of particles are in state E0, and
what fraction are in state E1. This is similar to what we did earlier in find-
ing the Boltzmann distribution, except that these particles are Bosons and are
indistinguishable from each other.

In particular: we cannot find the answer by finding the macro-state with
the highest entropy, as we did in calculating the Boltzmann distribution case.
This is because we discovered that for Bosons, each macro-state has only one
micro-state, so they all have the same entropy.

We are going to get around this by loosening one of the assumptions we made
earlier. Instead of assuming that the total energy is a constant, we will assume
that the temperature is a constant. At a fixed temperature, you can still have a
distribution of possible energies.

Instead of the energy of each particle, we will look at the energy of the system.
Since the particles are indistinguishable, there are only N + 1 possibilities: the
number of particles in the higher energy state can be a number, k, between 0
and N .

Then the number of particles in the lower energy state will be N − k; and
the energy of this configuration is k · ∆. Each of these configurations has the
same entropy, because swapping any two particles doesn’t lead to a new state –
that’s what it means to say that the particles are indistinguishable.

Here’s the critical part: The particles are indistinguishable, but the con-
figurations have different numbers of particles in each level, so the configurations
themselves are distinguishable from each other.

So the Boltzmann distribution statistics is valid, but not for the distribution
of particles, but for the distribution of configurations. That is, the probability of
having k particles in the higher energy level will be

p(k) = C exp(−k∆/T )

For convenience, define p = exp(−∆/T ). Then,

p(k) = C exp(−k∆/T ) = C exp(−∆/T )k = Cpk.

Obviously, the sum of the probabilities of being in each of the configurations
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must be 1. That is,

p(0) + p(1) + p(2) + . . . = Cp0 + Cp1 + Cp2 + . . . CpN = 1

Let’s make the assumption that N >> 1, so we can approximately consider
the series to be an infinite series.

Cp0 + Cp1 + Cp2 + . . . = 1

C · (p0 + p1 + p2 + . . .) = 1

p0 + p1 + p2 + ... is known as a geometric series. The sum of the series is

well known to be
1

1− p
, assuming 0 < p < 1. That gives us:

C · 1

1− p
= 1

C = (1− p)

Here’s the question we will be trying to answer: what is the average
number of particles in the higher energy level?

This is how we calculate that average number:

1. For a given configuration, find the probability of being in that configuration

2. Multiply that by the number of particles in the higher energy level for that
configuration.

3. Then add up for all configurations.

[For example: if you were flipping a coin with a “1” on one side and a
“2” on the other side, and a 25% chance of the “1” coming up. What is the
average of the numbers that come up, if you flipped the coin many times? It’s
(1/4× 1) + (3/4× 2) = 7/4.]

So, the average number of particles in the higher energy level over all con-
figurations:
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= (C · p0 × 0) + (C · p1 × 1) + (C · p2 × 2) + . . .

= C · (1 · p+ 2 · p2 + 3 · p3 + . . .)

= (1− p) · (1 · p+ 2 · p2 + 3 · p3 + . . .)

The series, (1 · p + 2 · p2 + 3 · p3 + . . .) is another well known series, called
the “arithmetico-geometric series”.32 It’s not difficult to find the sum33: it’s

p

(1− p)2
.

Putting it all together, this means that the average number of particles in the

higher energy level, over all configurations is
p

1− p
. Do you notice something

funny about this?�

This number of particles does not depend on N ! That means that as you

increase the total number of particles, all of them except
p

1− p
of them will be

in the lower energy level, on the average. As N grows, close to 100% of the
particles will be in the lower energy level, even though the temperature is not
zero.

That is, even though the temperature gives the particles enough energy to
be in the higher energy level, they congregate in the lower energy level, because
of the weird statistics that happens when the particles are indistinguishable.34

This is different from what we see in “normal” particles, where the Boltz-
mann distribution tells us that at any non-zero temperature, there’s a non-zero
probability of any particular particle being in the higher energy level.

This phenomenon – in real life, not in this extremely simplified model – is
known as Bose-Einstein condensation. It’s responsible for, among other things,
superconductivity in some materials. To put it very crudely: electrical resistance
occurs when the atoms of the material slows down the progress of an electron
that is conducting a current. Critically, the atoms of the material may be able to
slow down a single electron, but they can’t slow down a zombie horde of electrons
that have paired up, and are all in the same state and completely indistinguishable
from each other.

32Okay, honestly, not nearly as well-known as the geometric series.
33or to look up the sum
34It’s like the zombie apocalypse of physics.
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And I want to say that it’s insanely amazing that we could get here, just
starting from counting different ways to order ice cream. Get an ice cream for
yourself, please, any flavor you want, because you certainly deserve it.35

35And thank you for reading the footnotes too.


